메뉴 건너뛰기




Volumn 48, Issue 1, 2015, Pages 7-15

RBF neural network soft-sensor modeling of rotary kiln pellet quality indices optimized by biogeography-based optimization algorithm

Author keywords

Biogeography based optimization algorithm; RBF neural network; Rotary kiln pellet sintering; Soft sensor

Indexed keywords

CHAINS; ECOLOGY; HEURISTIC ALGORITHMS; INDICATORS (CHEMICAL); OPTIMIZATION; PELLETIZING; RADIAL BASIS FUNCTION NETWORKS; REAL TIME CONTROL; ROTARY KILNS; SINTERING;

EID: 84921652269     PISSN: 00219592     EISSN: None     Source Type: Journal    
DOI: 10.1252/jcej.14we135     Document Type: Article
Times cited : (11)

References (14)
  • 1
    • 39949084166 scopus 로고    scopus 로고
    • Fuzzy Rule-Based Prediction of Hardness for Sintered HSS Components
    • Chatterjee, D., G. Sutradhar and B. Oraon; “Fuzzy Rule-Based Prediction of Hardness for Sintered HSS Components,” J. Mater. Process. Technol., 200, 212-220 (2008)
    • (2008) J. Mater. Process. Technol. , vol.200 , pp. 212-220
    • Chatterjee, D.1    Sutradhar, G.2    Oraon, B.3
  • 2
    • 0034205086 scopus 로고    scopus 로고
    • Fuzzy Neural Networks-Based Quality Prediction System for Sintering Process
    • Er, M. J., J. Liao and J. Lin; “Fuzzy Neural Networks-Based Quality Prediction System for Sintering Process,” IEEE Trans. Fuzzy Syst., 8, 314-324 (2000)
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , pp. 314-324
    • Er, M.J.1    Liao, J.2    Lin, J.3
  • 4
    • 84891325245 scopus 로고    scopus 로고
    • Prediction of Iron Ore Sintering Characters on the Basis of Regression Analysis and Artificial Neural Network
    • Fan, X.-H., L. Yang and X.-L. Chen; “Prediction of Iron Ore Sintering Characters on the Basis of Regression Analysis and Artificial Neural Network,” Energy Procedia, 16, 769-776 (2012)
    • (2012) Energy Procedia , vol.16 , pp. 769-776
    • Fan, X.-H.1    Yang, L.2    Chen, X.-L.3
  • 5
    • 84859620273 scopus 로고    scopus 로고
    • Evolutionary Generalized Radial Basis Function Neural Networks for Improving Prediction Accuracy in Gene Classification Using Feature Selection
    • Fernández-Navarro, F., C. Hervás-Martínez, R. Ruiz and J. C. Riquelme; “Evolutionary Generalized Radial Basis Function Neural Networks for Improving Prediction Accuracy in Gene Classification Using Feature Selection,” Appl. So Comput., 12, 1787-1800 (2012)
    • (2012) Appl. So Comput. , vol.12 , pp. 1787-1800
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Ruiz, R.3    Riquelme, J.C.4
  • 6
    • 84877134135 scopus 로고    scopus 로고
    • RBF Neural Network Inferential Sensor for Process Emission Monitoring
    • Iliyas, S. A., M. Elshafei, M. A. Habib and A. A. Adeniran; “RBF Neural Network Inferential Sensor for Process Emission Monitoring,” Control Eng. Pract., 21, 962-970 (2013)
    • (2013) Control Eng. Pract. , vol.21 , pp. 962-970
    • Iliyas, S.A.1    Elshafei, M.2    Habib, M.A.3    Adeniran, A.A.4
  • 7
    • 84872920533 scopus 로고    scopus 로고
    • Virtual Sensing Technology in Process Industries: Trends and Challenges Revealed by Recent Industrial Applications
    • Kano, M. and K. Fujiwara; “Virtual Sensing Technology in Process Industries: Trends and Challenges Revealed by Recent Industrial Applications,” J. Chem. Eng. Japan, 46, 1-17 (2013)
    • (2013) J. Chem. Eng. Japan , vol.46 , pp. 1-17
    • Kano, M.1    Fujiwara, K.2
  • 8
    • 78249255465 scopus 로고    scopus 로고
    • Polynomial-Based Radial Basis Function Neural Networks (P-RBFNNs) Realized with the Aid of Particle Swarm Optimization
    • Oh, S. K., W. D. Kim, W. Pedrycz and B.-J. Park; “Polynomial-Based Radial Basis Function Neural Networks (P-RBFNNs) Realized with the Aid of Particle Swarm Optimization,” Fuzzy Sets Syst., 163, 54-77 (2011)
    • (2011) Fuzzy Sets Syst. , vol.163 , pp. 54-77
    • Oh, S.K.1    Kim, W.D.2    Pedrycz, W.3    Park, B.-J.4
  • 9
    • 78650751180 scopus 로고    scopus 로고
    • Data-Driven Prediction of Sintering Burn-through Point Based on Novel Genetic Programming
    • Shang, X. Q., J. G. Lu, Y. X. Sun, J. Liu and Y. Q. Ying; “Data-Driven Prediction of Sintering Burn-through Point Based on Novel Genetic Programming,” J. Iron Steel Res. Int., 17, 1-5 (2010)
    • (2010) J. Iron Steel Res. Int. , vol.17 , pp. 1-5
    • Shang, X.Q.1    Lu, J.G.2    Sun, Y.X.3    Liu, J.4    Ying, Y.Q.5
  • 10
    • 79551685695 scopus 로고    scopus 로고
    • Forecasting Stock Indices Using Radial Basis Function Neural Networks Optimized by Artificial Fish Swarm Algorithm
    • Shen, W., X. P. Guo, C. Wu and D. S. Wu; “Forecasting Stock Indices Using Radial Basis Function Neural Networks Optimized by Artificial Fish Swarm Algorithm,” Knowl. Base. Syst., 24, 378-385 (2011)
    • (2011) Knowl. Base. Syst. , vol.24 , pp. 378-385
    • Shen, W.1    Guo, X.P.2    Wu, C.3    Wu, D.S.4
  • 11
    • 57249115093 scopus 로고    scopus 로고
    • Biogeography-Based Optimization
    • Simon
    • Simon, D.; “Biogeography-Based Optimization,” IEEE Trans. Evol. Comput., 12, 702-713 (2008)
    • (2008) IEEE Trans. Evol. Comput. , vol.12 , pp. 702-713
  • 12
    • 77950320478 scopus 로고    scopus 로고
    • Simulation and Prediction of Alkalinity in Sintering Process Based on Grey Least Squares Support Vector Machine
    • Song, Q. and A. M. Wang; “Simulation and Prediction of Alkalinity in Sintering Process Based on Grey Least Squares Support Vector Machine,” J. Iron Steel Res. Int., 16, 1-6 (2009)
    • (2009) J. Iron Steel Res. Int. , vol.16 , pp. 1-6
    • Song, Q.1    Wang, A.M.2
  • 13
    • 84855865275 scopus 로고    scopus 로고
    • An Intelligent Control System Based on Prediction of the Burn-through Point for the Sintering Process of an Iron and Steel Plant
    • Wu, M., P. Duan, W. H. Cao, J. H. She and J. Xiang; “An Intelligent Control System Based on Prediction of the Burn-through Point for the Sintering Process of an Iron and Steel Plant,” Expert Syst. Appl., 39, 5971-5981 (2012)
    • (2012) Expert Syst. Appl. , vol.39 , pp. 5971-5981
    • Wu, M.1    Duan, P.2    Cao, W.H.3    She, J.H.4    Xiang, J.5
  • 14
    • 84880759555 scopus 로고    scopus 로고
    • Optimization of RBF Neural Networks Using a Rough K-Means Algorithm and Application to Naphtha Dry Point Soft Sensors
    • Zhou, W. H., X. F. Yan, C. Chen and M. J. Guo; “Optimization of RBF Neural Networks Using a Rough K-Means Algorithm and Application to Naphtha Dry Point Soft Sensors,” J. Chem. Eng. Japan, 46, 501-508 (2013)
    • (2013) J. Chem. Eng. Japan , vol.46 , pp. 501-508
    • Zhou, W.H.1    Yan, X.F.2    Chen, C.3    Guo, M.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.