-
2
-
-
0020102027
-
Least squares quantization in PCM
-
Mar.
-
S. Lloyd, "Least squares quantization in PCM," IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129-137, Mar. 1982.
-
(1982)
IEEE Trans. Inf. Theory
, vol.28
, Issue.2
, pp. 129-137
-
-
Lloyd, S.1
-
3
-
-
35348899361
-
The effectiveness of Lloyd-type methods for the κ-means problem
-
Oct.
-
R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy, "The effectiveness of Lloyd-type methods for the κ-means problem," in Proc. 47th Annu. IEEE Symp. Found. Comput. Sci. (FOCS), Oct. 2006, pp. 165-176.
-
(2006)
Proc. 47th Annu. IEEE Symp. Found. Comput. Sci. (FOCS)
, pp. 165-176
-
-
Ostrovsky, R.1
Rabani, Y.2
Schulman, L.J.3
Swamy, C.4
-
4
-
-
37549018049
-
Top 10 algorithms in data mining
-
X. Wu et al., "Top 10 algorithms in data mining," Knowl. Inf. Syst., vol. 14, no. 1, pp. 1-37, 2008.
-
(2008)
Knowl. Inf. Syst.
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
-
5
-
-
84898964855
-
Result analysis of the NIPS 2003 feature selection challenge
-
Red Hook, NY, USA: Curran & Associates Inc
-
I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, "Result analysis of the NIPS 2003 feature selection challenge," in Neural Information Processing Systems. Red Hook, NY, USA: Curran & Associates Inc., 2005.
-
(2005)
Neural Information Processing Systems
-
-
Guyon, I.1
Gunn, S.2
Ben-Hur, A.3
Dror, G.4
-
7
-
-
11244288693
-
A simple linear time (1 +∈)- approximation algorithm for κ-means clustering in any dimensions
-
A. Kumar, Y. Sabharwal, and S. Sen, "A simple linear time (1 +∈)- approximation algorithm for κ-means clustering in any dimensions," in Proc. 45th Annu. IEEE Symp. Found. Comput. Sci. (FOCS), 2004, pp. 454-462.
-
(2004)
Proc. 45th Annu. IEEE Symp. Found. Comput. Sci. (FOCS)
, pp. 454-462
-
-
Kumar, A.1
Sabharwal, Y.2
Sen, S.3
-
12
-
-
0032800925
-
Clustering in large graphs and matrices
-
P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, "Clustering in large graphs and matrices," in Proc. 10th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), 1999, pp. 291-299.
-
(1999)
Proc. 10th Annu. ACM- SIAM Symp. Discrete Algorithms (SODA)
, pp. 291-299
-
-
Drineas, P.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
Vinay, V.5
-
13
-
-
84876035763
-
Turning big data into tiny data: Constant-size coresets for κ-means, PCA and projective clustering
-
D. Feldman, M. Schmidt, and C. Sohler, "Turning big data into tiny data: Constant-size coresets for κ-means, PCA and projective clustering," in Proc. 24th Annu. ACM-SIAM SODA, 2013, pp. 1434-1453.
-
(2013)
Proc. 24th Annu. ACM-SIAM SODA
, pp. 1434-1453
-
-
Feldman, D.1
Schmidt, M.2
Sohler, C.3
-
14
-
-
33745561205
-
An introduction to variable and feature selection
-
Mar.
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
15
-
-
0001654702
-
Extensions of Lipschitz mappings into a Hilbert space
-
W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space," Contemp. Math., vol. 26, pp. 189-206, 1984.
-
(1984)
Contemp. Math.
, vol.26
, pp. 189-206
-
-
Johnson, W.B.1
Lindenstrauss, J.2
-
16
-
-
78650966380
-
Unsupervised feature selection for the κ-means clustering problem
-
Red Hook, NY, USA: Curran & Associates Inc.
-
C. Boutsidis, M. W. Mahoney, and P. Drineas, "Unsupervised feature selection for the κ-means clustering problem," in Neural Information Processing Systems. Red Hook, NY, USA: Curran & Associates Inc., 2009.
-
(2009)
Neural Information Processing Systems
-
-
Boutsidis, C.1
Mahoney, M.W.2
Drineas, P.3
-
17
-
-
34547728320
-
Sampling from large matrices: An approach through geometric functional analysis
-
M. Rudelson and R. Vershynin, "Sampling from large matrices: An approach through geometric functional analysis," J. ACM, vol. 54, no. 4, 2007, Art. ID 21.
-
(2007)
J. ACM
, vol.54
, Issue.4
-
-
Rudelson, M.1
Vershynin, R.2
-
18
-
-
35348901208
-
Improved approximation algorithms for large matrices via random projections
-
Oct.
-
T. Sarlos, "Improved approximation algorithms for large matrices via random projections," in Proc. 47th Annu. IEEE Symp. Found. Comput. Sci. (FOCS), Oct. 2006, pp. 143-152.
-
(2006)
Proc. 47th Annu. IEEE Symp. Found. Comput. Sci. (FOCS)
, pp. 143-152
-
-
Sarlos, T.1
-
20
-
-
0026221591
-
A linear algorithm for generating random numbers with a given distribution
-
Sep.
-
M. D. Vose, "A linear algorithm for generating random numbers with a given distribution," IEEE Trans. Softw. Eng., vol. 17, no. 9, pp. 972-975, Sep. 1991.
-
(1991)
IEEE Trans. Softw. Eng.
, vol.17
, Issue.9
, pp. 972-975
-
-
Vose, M.D.1
-
22
-
-
0031644241
-
Approximate nearest neighbors: Towards removing the curse of dimensionality
-
P. Indyk and R. Motwani, "Approximate nearest neighbors: Towards removing the curse of dimensionality," in Proc. 30th Annu. ACM Symp. Theory Comput. (STOC), 1998, pp. 604-613.
-
(1998)
Proc. 30th Annu. ACM Symp. Theory Comput. (STOC)
, pp. 604-613
-
-
Indyk, P.1
Motwani, R.2
-
23
-
-
33748109164
-
Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform
-
N. Ailon and B. Chazelle, "Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform," in Proc. 38th Annu. ACM Symp. Theory Comput. (STOC), 2006, pp. 557-563.
-
(2006)
Proc. 38th Annu. ACM Symp. Theory Comput. (STOC)
, pp. 557-563
-
-
Ailon, N.1
Chazelle, B.2
-
24
-
-
0038166193
-
Database-friendly random projections: Johnson-Lindenstrauss with binary coins
-
D. Achlioptas, "Database-friendly random projections: Johnson-Lindenstrauss with binary coins," J. Comput. Syst. Sci., vol. 66, no. 4, pp. 671-687, 2003.
-
(2003)
J. Comput. Syst. Sci.
, vol.66
, Issue.4
, pp. 671-687
-
-
Achlioptas, D.1
-
25
-
-
57349122366
-
The Mailman algorithm: A note on matrix-vector multiplication
-
E. Liberty and S. W. Zucker, "The Mailman algorithm: A note on matrix-vector multiplication," Inf. Process. Lett., vol. 109, no. 3, pp. 179-182, 2009.
-
(2009)
Inf. Process. Lett.
, vol.109
, Issue.3
, pp. 179-182
-
-
Liberty, E.1
Zucker, S.W.2
-
26
-
-
84921464503
-
-
MathWorks, Natick, MA, USA
-
MATLAB, 7.13.0.564 (R2011b), MathWorks, Natick, MA, USA, 2010.
-
(2010)
MATLAB, 7.13.0.564 (R2011b)
-
-
-
27
-
-
84864039505
-
Laplacian score for feature selection
-
Y. Weiss, B. Schölkopf, and J. Platt, Eds. Red Hook, NY, USA: Curran & Associates Inc
-
X. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection," in Neural Information Processing Systems, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Red Hook, NY, USA: Curran & Associates Inc., 2006, pp. 507-514.
-
(2006)
Neural Information Processing Systems
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
28
-
-
84921475075
-
-
Online, accessed Jun. 4, 2013
-
Feature Ranking Using Laplacian Score. [Online]. Available: http://www.cad.zju.edu.cn/home/dengcai/Data/MCFS.html, accessed Jun. 4, 2013.
-
Feature Ranking Using Laplacian Score
-
-
-
29
-
-
84886567160
-
-
School Inf. Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep. [Online]
-
K. Bache and M. Lichman. (2013). "UCI machine learning repository," School Inf. Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep. [Online]. Available: http://archive.ics.uci.edu/ml
-
(2013)
UCI Machine Learning Repository
-
-
Bache, K.1
Lichman, M.2
-
31
-
-
0011921689
-
-
AT&T Lab., Cambridge, U.K. [Online] , accessed Jan 1, 2013
-
AT&T Lab., Cambridge, U.K. The ORL Database of Faces. [Online]. Available: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html, accessed Jan 1, 2013.
-
The ORL Database of Faces
-
-
-
32
-
-
84889978993
-
-
Carnegie Mellon Univ. [Online] , accessed Jan 1, 2013
-
Carnegie Mellon Univ. Pie Database. [Online]. Available: http://www.ri.cmu.edu/research-project-detail.html?project-id=418&menu-id=261, accessed Jan 1, 2013.
-
Pie Database
-
-
-
33
-
-
33751115359
-
Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication
-
P. Drineas, R. Kannan, and M. Mahoney, "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput., vol. 36, no. 1, pp. 132-157, 2006.
-
(2006)
SIAM J. Comput.
, vol.36
, Issue.1
, pp. 132-157
-
-
Drineas, P.1
Kannan, R.2
Mahoney, M.3
-
35
-
-
33750091599
-
A fast random sampling algorithm for sparsifying matrices
-
Berlin, Germany: Springer-Verlag. [Online]
-
S. Arora, E. Hazan, and S. Kale, "A fast random sampling algorithm for sparsifying matrices," in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (Lecture Notes in Computer Science), vol. 4110. Berlin, Germany: Springer-Verlag, 2006, pp. 272-279. [Online]. Available: http://dx.doi.org/10.1007/11830924-26
-
(2006)
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (Lecture Notes in Computer Science)
, vol.4110
, pp. 272-279
-
-
Arora, S.1
Hazan, E.2
Kale, S.3
|