메뉴 건너뛰기




Volumn 61, Issue 2, 2015, Pages 1045-1062

Randomized dimensionality reduction for κ-means clustering

Author keywords

clustering; dimensionality reduction; randomized algorithms

Indexed keywords

APPROXIMATION ALGORITHMS; EXTRACTION; FEATURE EXTRACTION; HEURISTIC METHODS; REDUCTION; SINGULAR VALUE DECOMPOSITION;

EID: 84921498474     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIT.2014.2375327     Document Type: Article
Times cited : (215)

References (35)
  • 2
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Mar.
    • S. Lloyd, "Least squares quantization in PCM," IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129-137, Mar. 1982.
    • (1982) IEEE Trans. Inf. Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.1
  • 4
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • X. Wu et al., "Top 10 algorithms in data mining," Knowl. Inf. Syst., vol. 14, no. 1, pp. 1-37, 2008.
    • (2008) Knowl. Inf. Syst. , vol.14 , Issue.1 , pp. 1-37
    • Wu, X.1
  • 5
    • 84898964855 scopus 로고    scopus 로고
    • Result analysis of the NIPS 2003 feature selection challenge
    • Red Hook, NY, USA: Curran & Associates Inc
    • I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, "Result analysis of the NIPS 2003 feature selection challenge," in Neural Information Processing Systems. Red Hook, NY, USA: Curran & Associates Inc., 2005.
    • (2005) Neural Information Processing Systems
    • Guyon, I.1    Gunn, S.2    Ben-Hur, A.3    Dror, G.4
  • 7
    • 11244288693 scopus 로고    scopus 로고
    • A simple linear time (1 +∈)- approximation algorithm for κ-means clustering in any dimensions
    • A. Kumar, Y. Sabharwal, and S. Sen, "A simple linear time (1 +∈)- approximation algorithm for κ-means clustering in any dimensions," in Proc. 45th Annu. IEEE Symp. Found. Comput. Sci. (FOCS), 2004, pp. 454-462.
    • (2004) Proc. 45th Annu. IEEE Symp. Found. Comput. Sci. (FOCS) , pp. 454-462
    • Kumar, A.1    Sabharwal, Y.2    Sen, S.3
  • 13
    • 84876035763 scopus 로고    scopus 로고
    • Turning big data into tiny data: Constant-size coresets for κ-means, PCA and projective clustering
    • D. Feldman, M. Schmidt, and C. Sohler, "Turning big data into tiny data: Constant-size coresets for κ-means, PCA and projective clustering," in Proc. 24th Annu. ACM-SIAM SODA, 2013, pp. 1434-1453.
    • (2013) Proc. 24th Annu. ACM-SIAM SODA , pp. 1434-1453
    • Feldman, D.1    Schmidt, M.2    Sohler, C.3
  • 14
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar.
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 15
    • 0001654702 scopus 로고
    • Extensions of Lipschitz mappings into a Hilbert space
    • W. B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space," Contemp. Math., vol. 26, pp. 189-206, 1984.
    • (1984) Contemp. Math. , vol.26 , pp. 189-206
    • Johnson, W.B.1    Lindenstrauss, J.2
  • 16
    • 78650966380 scopus 로고    scopus 로고
    • Unsupervised feature selection for the κ-means clustering problem
    • Red Hook, NY, USA: Curran & Associates Inc.
    • C. Boutsidis, M. W. Mahoney, and P. Drineas, "Unsupervised feature selection for the κ-means clustering problem," in Neural Information Processing Systems. Red Hook, NY, USA: Curran & Associates Inc., 2009.
    • (2009) Neural Information Processing Systems
    • Boutsidis, C.1    Mahoney, M.W.2    Drineas, P.3
  • 17
    • 34547728320 scopus 로고    scopus 로고
    • Sampling from large matrices: An approach through geometric functional analysis
    • M. Rudelson and R. Vershynin, "Sampling from large matrices: An approach through geometric functional analysis," J. ACM, vol. 54, no. 4, 2007, Art. ID 21.
    • (2007) J. ACM , vol.54 , Issue.4
    • Rudelson, M.1    Vershynin, R.2
  • 18
    • 35348901208 scopus 로고    scopus 로고
    • Improved approximation algorithms for large matrices via random projections
    • Oct.
    • T. Sarlos, "Improved approximation algorithms for large matrices via random projections," in Proc. 47th Annu. IEEE Symp. Found. Comput. Sci. (FOCS), Oct. 2006, pp. 143-152.
    • (2006) Proc. 47th Annu. IEEE Symp. Found. Comput. Sci. (FOCS) , pp. 143-152
    • Sarlos, T.1
  • 20
    • 0026221591 scopus 로고
    • A linear algorithm for generating random numbers with a given distribution
    • Sep.
    • M. D. Vose, "A linear algorithm for generating random numbers with a given distribution," IEEE Trans. Softw. Eng., vol. 17, no. 9, pp. 972-975, Sep. 1991.
    • (1991) IEEE Trans. Softw. Eng. , vol.17 , Issue.9 , pp. 972-975
    • Vose, M.D.1
  • 22
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • P. Indyk and R. Motwani, "Approximate nearest neighbors: Towards removing the curse of dimensionality," in Proc. 30th Annu. ACM Symp. Theory Comput. (STOC), 1998, pp. 604-613.
    • (1998) Proc. 30th Annu. ACM Symp. Theory Comput. (STOC) , pp. 604-613
    • Indyk, P.1    Motwani, R.2
  • 23
    • 33748109164 scopus 로고    scopus 로고
    • Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform
    • N. Ailon and B. Chazelle, "Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform," in Proc. 38th Annu. ACM Symp. Theory Comput. (STOC), 2006, pp. 557-563.
    • (2006) Proc. 38th Annu. ACM Symp. Theory Comput. (STOC) , pp. 557-563
    • Ailon, N.1    Chazelle, B.2
  • 24
    • 0038166193 scopus 로고    scopus 로고
    • Database-friendly random projections: Johnson-Lindenstrauss with binary coins
    • D. Achlioptas, "Database-friendly random projections: Johnson-Lindenstrauss with binary coins," J. Comput. Syst. Sci., vol. 66, no. 4, pp. 671-687, 2003.
    • (2003) J. Comput. Syst. Sci. , vol.66 , Issue.4 , pp. 671-687
    • Achlioptas, D.1
  • 25
    • 57349122366 scopus 로고    scopus 로고
    • The Mailman algorithm: A note on matrix-vector multiplication
    • E. Liberty and S. W. Zucker, "The Mailman algorithm: A note on matrix-vector multiplication," Inf. Process. Lett., vol. 109, no. 3, pp. 179-182, 2009.
    • (2009) Inf. Process. Lett. , vol.109 , Issue.3 , pp. 179-182
    • Liberty, E.1    Zucker, S.W.2
  • 26
  • 27
    • 84864039505 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • Y. Weiss, B. Schölkopf, and J. Platt, Eds. Red Hook, NY, USA: Curran & Associates Inc
    • X. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection," in Neural Information Processing Systems, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Red Hook, NY, USA: Curran & Associates Inc., 2006, pp. 507-514.
    • (2006) Neural Information Processing Systems , pp. 507-514
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 28
    • 84921475075 scopus 로고    scopus 로고
    • Online, accessed Jun. 4, 2013
    • Feature Ranking Using Laplacian Score. [Online]. Available: http://www.cad.zju.edu.cn/home/dengcai/Data/MCFS.html, accessed Jun. 4, 2013.
    • Feature Ranking Using Laplacian Score
  • 29
    • 84886567160 scopus 로고    scopus 로고
    • School Inf. Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep. [Online]
    • K. Bache and M. Lichman. (2013). "UCI machine learning repository," School Inf. Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep. [Online]. Available: http://archive.ics.uci.edu/ml
    • (2013) UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 31
    • 0011921689 scopus 로고    scopus 로고
    • AT&T Lab., Cambridge, U.K. [Online] , accessed Jan 1, 2013
    • AT&T Lab., Cambridge, U.K. The ORL Database of Faces. [Online]. Available: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html, accessed Jan 1, 2013.
    • The ORL Database of Faces
  • 32
    • 84889978993 scopus 로고    scopus 로고
    • Carnegie Mellon Univ. [Online] , accessed Jan 1, 2013
    • Carnegie Mellon Univ. Pie Database. [Online]. Available: http://www.ri.cmu.edu/research-project-detail.html?project-id=418&menu-id=261, accessed Jan 1, 2013.
    • Pie Database
  • 33
    • 33751115359 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication
    • P. Drineas, R. Kannan, and M. Mahoney, "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput., vol. 36, no. 1, pp. 132-157, 2006.
    • (2006) SIAM J. Comput. , vol.36 , Issue.1 , pp. 132-157
    • Drineas, P.1    Kannan, R.2    Mahoney, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.