메뉴 건너뛰기




Volumn 40, Issue 5, 2015, Pages 2199-2206

Direct electrochemistry of glucose oxidase immobilized on carbon nanotube for improving glucose sensing

Author keywords

Electron transfer rate constant; Enzyme immobilization structure; Enzyme stability; Glucose oxidase; Glucose oxidation reaction; Physical adsorption

Indexed keywords

CARBON NANOTUBES; CATALYST ACTIVITY; CYCLIC VOLTAMMETRY; ELECTRON TRANSITIONS; ENZYME IMMOBILIZATION; GLUCOSE; GLUCOSE SENSORS; RATE CONSTANTS; REDOX REACTIONS; SURFACE REACTIONS;

EID: 84921346409     PISSN: 03603199     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijhydene.2014.12.019     Document Type: Article
Times cited : (55)

References (31)
  • 1
    • 53949106970 scopus 로고    scopus 로고
    • Nanobiocatalysis and its potential applications
    • Kim J, Grate JW, Wang P. Nanobiocatalysis and its potential applications. Trends Biotechnol 2008;26:639.
    • (2008) Trends Biotechnol , vol.26 , pp. 639
    • Kim, J.1    Grate, J.W.2    Wang, P.3
  • 3
    • 27844518415 scopus 로고    scopus 로고
    • Nanostructures for enzyme stabilization
    • Kim J, Grate JW, Wang P. Nanostructures for enzyme stabilization. Chem Eng Sci 2006;61:1017.
    • (2006) Chem Eng Sci , vol.61 , pp. 1017
    • Kim, J.1    Grate, J.W.2    Wang, P.3
  • 4
    • 33751256536 scopus 로고    scopus 로고
    • Nanoscale biocatalyst systems
    • Wang P. Nanoscale biocatalyst systems. Curr Opin Biotechnol 2006;17:574.
    • (2006) Curr Opin Biotechnol , vol.17 , pp. 574
    • Wang, P.1
  • 6
    • 70350475652 scopus 로고    scopus 로고
    • Kinetic limitations of a bioelectrochemical electrode using carbon nanotube-attached glucose oxidase for biofuel cells
    • Zhao XY, Jia HF, Kim J, Wang P. Kinetic limitations of a bioelectrochemical electrode using carbon nanotube-attached glucose oxidase for biofuel cells. Biotechnol Bioeng 2009;104:1068.
    • (2009) Biotechnol Bioeng , vol.104 , pp. 1068
    • Zhao, X.Y.1    Jia, H.F.2    Kim, J.3    Wang, P.4
  • 7
    • 0030126336 scopus 로고    scopus 로고
    • Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes
    • Dai HJ, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 1996;272:523.
    • (1996) Science , vol.272 , pp. 523
    • Dai, H.J.1    Wong, E.W.2    Lieber, C.M.3
  • 9
    • 0037459369 scopus 로고    scopus 로고
    • "Plugging into enzymes": Nanowiring of redox enzymes by a gold nanoparticle
    • Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I. "Plugging into enzymes": nanowiring of redox enzymes by a gold nanoparticle. Science 2003;299:1877.
    • (2003) Science , vol.299 , pp. 1877
    • Xiao, Y.1    Patolsky, F.2    Katz, E.3    Hainfeld, J.F.4    Willner, I.5
  • 10
    • 4143072613 scopus 로고    scopus 로고
    • Direct electron transfer of glucose oxidase promoted by carbon nanotubes
    • Cai C, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem 2004;332:75.
    • (2004) Anal Biochem , vol.332 , pp. 75
    • Cai, C.1    Chen, J.2
  • 11
    • 27444445421 scopus 로고    scopus 로고
    • The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix
    • Liu Y, Wang M, Zhao F, Xu Z, Dong S. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron 2005;21:984.
    • (2005) Biosens Bioelectron , vol.21 , pp. 984
    • Liu, Y.1    Wang, M.2    Zhao, F.3    Xu, Z.4    Dong, S.5
  • 12
    • 77957157089 scopus 로고    scopus 로고
    • Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite
    • Guo CX, Li CM. Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite. Phys Chem Chem Phys 2010;12:12153.
    • (2010) Phys Chem Chem Phys , vol.12 , pp. 12153
    • Guo, C.X.1    Li, C.M.2
  • 13
    • 84871912183 scopus 로고    scopus 로고
    • Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene
    • Liang B, Fang L, Yang G, Hu Y, Guo X, Ye X. Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene. Biosens Bioelectron 2013;43:131.
    • (2013) Biosens Bioelectron , vol.43 , pp. 131
    • Liang, B.1    Fang, L.2    Yang, G.3    Hu, Y.4    Guo, X.5    Ye, X.6
  • 14
    • 70349786339 scopus 로고    scopus 로고
    • Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode
    • Courjean O, Gao F, Mano N. Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chem Int Ed 2009;48:5897.
    • (2009) Angew Chem Int Ed , vol.48 , pp. 5897
    • Courjean, O.1    Gao, F.2    Mano, N.3
  • 15
    • 70350394842 scopus 로고    scopus 로고
    • Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing
    • Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 2009;25:901.
    • (2009) Biosens Bioelectron , vol.25 , pp. 901
    • Kang, X.1    Wang, J.2    Wu, H.3    Aksay, I.A.4    Liu, J.5    Lin, Y.6
  • 16
    • 0036802211 scopus 로고    scopus 로고
    • Direct electron transfer of glucose oxidase on carbon nanotubes
    • Anthony GE, Lei C, Baughman RH. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 2002;13:559.
    • (2002) Nanotechnology , vol.13 , pp. 559
    • Anthony, G.E.1    Lei, C.2    Baughman, R.H.3
  • 17
    • 0036883708 scopus 로고    scopus 로고
    • Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composite membrane
    • Chen X, Hu Y, Wilson GS. Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composite membrane. Biosens Bioelectron 2002;17:1005.
    • (2002) Biosens Bioelectron , vol.17 , pp. 1005
    • Chen, X.1    Hu, Y.2    Wilson, G.S.3
  • 18
    • 0034324767 scopus 로고    scopus 로고
    • Amperometric glucose biosensors based on Prussian Blue- and polyaniline-glucose oxidase modified electrodes
    • Garjonyte R, Malinauskas A. Amperometric glucose biosensors based on Prussian Blue- and polyaniline-glucose oxidase modified electrodes. Biosens Bioelectron 2000;15:445.
    • (2000) Biosens Bioelectron , vol.15 , pp. 445
    • Garjonyte, R.1    Malinauskas, A.2
  • 19
    • 37049082457 scopus 로고
    • Direct electron transfer reactions of glucose oxidase immobilised at a self-assembled monolayer
    • Jiang L, MCNeil CJ, Cooper JM. Direct electron transfer reactions of glucose oxidase immobilised at a self-assembled monolayer. J Chem Soc 1995;1:1293.
    • (1995) J Chem Soc , vol.1 , pp. 1293
    • Jiang, L.1    McNeil, C.J.2    Cooper, J.M.3
  • 20
    • 0038709731 scopus 로고    scopus 로고
    • Carbon nanotube/teflon composite electrochemical sensors and biosensors
    • Wang J, Musameh M. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 2003;75:2075.
    • (2003) Anal Chem , vol.75 , pp. 2075
    • Wang, J.1    Musameh, M.2
  • 21
    • 14644406826 scopus 로고    scopus 로고
    • Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites
    • Banks CE, Davies TJ, Wildgoose GG, Compton RG. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 2005;7:829.
    • (2005) Chem Commun , vol.7 , pp. 829
    • Banks, C.E.1    Davies, T.J.2    Wildgoose, G.G.3    Compton, R.G.4
  • 22
    • 60549114148 scopus 로고    scopus 로고
    • Fabrication of microfluidic devices incorporating bead-based reaction and microarray-based detection system for enzymatic assay
    • Kim DN, Lee Y, Koh WG. Fabrication of microfluidic devices incorporating bead-based reaction and microarray-based detection system for enzymatic assay. Sensors Actuators B 2009;137:305.
    • (2009) Sensors Actuators B , vol.137 , pp. 305
    • Kim, D.N.1    Lee, Y.2    Koh, W.G.3
  • 23
    • 84894609328 scopus 로고    scopus 로고
    • Improvenment in oxygen reduction activity of polypyrrole-coated PtNi-alloy catalyst prepared for proton exchange membrane fuel cells
    • Hyun K, Lee JH, Yoon CW, Cho YH, Kim LH, Kwon Y. Improvenment in oxygen reduction activity of polypyrrole-coated PtNi-alloy catalyst prepared for proton exchange membrane fuel cells. Synth Met 2014;190:48.
    • (2014) Synth Met , vol.190 , pp. 48
    • Hyun, K.1    Lee, J.H.2    Yoon, C.W.3    Cho, Y.H.4    Kim, L.H.5    Kwon, Y.6
  • 24
    • 84886574691 scopus 로고    scopus 로고
    • The effect of platinum based bimetallic electrocatalysts on oxygen reduction reaction of proton exchange membrane fuel cells
    • Hyun K, Lee JH, Yoon CW, Kwon Y. The effect of platinum based bimetallic electrocatalysts on oxygen reduction reaction of proton exchange membrane fuel cells. Int J Electrochem Sci 2013;8:11752.
    • (2013) Int J Electrochem Sci , vol.8 , pp. 11752
    • Hyun, K.1    Lee, J.H.2    Yoon, C.W.3    Kwon, Y.4
  • 25
    • 49249148639 scopus 로고
    • General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems
    • Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 1979;101:19.
    • (1979) J Electroanal Chem , vol.101 , pp. 19
    • Laviron, E.1
  • 26
    • 79952483874 scopus 로고    scopus 로고
    • A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode
    • Deng C, Chen J, Nie Z, Si S. A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode. Biosens Bioelectron 2010;20:213.
    • (2010) Biosens Bioelectron , vol.20 , pp. 213
    • Deng, C.1    Chen, J.2    Nie, Z.3    Si, S.4
  • 27
    • 0242469052 scopus 로고    scopus 로고
    • Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode
    • Liu S, Ju H. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron 2003;19:177.
    • (2003) Biosens Bioelectron , vol.19 , pp. 177
    • Liu, S.1    Ju, H.2
  • 28
    • 34248653228 scopus 로고    scopus 로고
    • Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase
    • Yan XB, Chen XJ, Tay BK, Khor KA. Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase. Electochem Commun 2007;9:1269.
    • (2007) Electochem Commun , vol.9 , pp. 1269
    • Yan, X.B.1    Chen, X.J.2    Tay, B.K.3    Khor, K.A.4
  • 29
    • 34248541307 scopus 로고    scopus 로고
    • Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes
    • Liu Q, Lu XB, Li J, Yao X, Li JH. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens Bioelectron 2007;22:3203.
    • (2007) Biosens Bioelectron , vol.22 , pp. 3203
    • Liu, Q.1    Lu, X.B.2    Li, J.3    Yao, X.4    Li, J.H.5
  • 30
    • 84874436529 scopus 로고    scopus 로고
    • A novel glucose biosensor based on phosphonic acid-functionalized silica nanoparticles for sensitive detection of glucose in real samples
    • Zhao W, Fang Y, Zhu Q, Wang K, Liu M, Huang X, et al. A novel glucose biosensor based on phosphonic acid-functionalized silica nanoparticles for sensitive detection of glucose in real samples. Electochim Acta 2013;89:278.
    • (2013) Electochim Acta , vol.89 , pp. 278
    • Zhao, W.1    Fang, Y.2    Zhu, Q.3    Wang, K.4    Liu, M.5    Huang, X.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.