메뉴 건너뛰기




Volumn 152, Issue , 2015, Pages 261-273

Folded-concave penalization approaches to tensor completion

Author keywords

Folded concave penalization; Local linear approximation; Nuclear norm; Sparse learning; Tensor completion

Indexed keywords

APPROXIMATION ALGORITHMS; COMPUTATIONAL EFFICIENCY; CONVEX OPTIMIZATION; LAGRANGE MULTIPLIERS; NUMERICAL METHODS;

EID: 84921059478     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.10.069     Document Type: Article
Times cited : (53)

References (44)
  • 2
    • 34548279916 scopus 로고    scopus 로고
    • Spatio-temporal inpainting for recovering texture maps of occluded building facades
    • Korah T., Rasmussen C. Spatio-temporal inpainting for recovering texture maps of occluded building facades. IEEE Trans. Image Process. 2007, 16(7):2262-2271.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.7 , pp. 2262-2271
    • Korah, T.1    Rasmussen, C.2
  • 3
    • 33645574703 scopus 로고    scopus 로고
    • Example-based 3D scan completion
    • The Symposium on Geometry Processing
    • M. Pauly, N. J. Mitra, J. Giesen, M. Gross, L. Guibas. Example-based 3D scan completion, in: The Symposium on Geometry Processing, 2005, pp. 23-32.
    • (2005) , pp. 23-32
    • Pauly, M.1    Mitra, N.J.2    Giesen, J.3    Gross, M.4    Guibas, L.5
  • 5
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Kolad T.G., Bader B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51(3):455-500.
    • (2009) SIAM Rev. , vol.51 , Issue.3 , pp. 455-500
    • Kolad, T.G.1    Bader, B.W.2
  • 6
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Candes E.J., Recht B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9(6):717-772.
    • (2009) Found. Comput. Math. , vol.9 , Issue.6 , pp. 717-772
    • Candes, E.J.1    Recht, B.2
  • 7
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation. near-optimal matrix completion
    • Candes E.J., Tao T. The power of convex relaxation. near-optimal matrix completion. IEEE Trans. Inf. Theory 2009, 56(5):2053-2080.
    • (2009) IEEE Trans. Inf. Theory , vol.56 , Issue.5 , pp. 2053-2080
    • Candes, E.J.1    Tao, T.2
  • 8
    • 79551661156 scopus 로고    scopus 로고
    • Tensor completion and low-n-rank tensor recovery via convex optimization
    • Gandy S., Recht B., Yamada I. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 2011, 27(2):025010.
    • (2011) Inverse Probl. , vol.27 , Issue.2 , pp. 025010
    • Gandy, S.1    Recht, B.2    Yamada, I.3
  • 9
    • 79957619696 scopus 로고    scopus 로고
    • On the extension of trace norm to tensors
    • NIPS Workshop on Tensors, Kernels, and Machine Learning
    • R. Tomioka, H. Kohei, H. Kashima, On the extension of trace norm to tensors, in: NIPS Workshop on Tensors, Kernels, and Machine Learning, 2010.
    • (2010)
    • Tomioka, R.1    Kohei, H.2    Kashima, H.3
  • 10
    • 84921045492 scopus 로고    scopus 로고
    • A Splitting Augmented Lagrangian Method for Low Multilinear-Rank Tensor Recovery
    • arXiv preprint
    • L. Yang, Z. H. Huang, Y. Li. A Splitting Augmented Lagrangian Method for Low Multilinear-Rank Tensor Recovery. arXiv preprint, 2013. http://arXiv:1310.1769.
    • (2013)
    • Yang, L.1    Huang, Z.H.2    Li, Y.3
  • 11
    • 84877880608 scopus 로고    scopus 로고
    • A fixed point iterative method for low n-rank tensor pursuit
    • Yang L., Zheng Z.H., Shi X.J. A fixed point iterative method for low n-rank tensor pursuit. IEEE Trans. Signal Process. 2013, 61(11):2952-2962.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.11 , pp. 2952-2962
    • Yang, L.1    Zheng, Z.H.2    Shi, X.J.3
  • 12
    • 84919948548 scopus 로고    scopus 로고
    • Parallel Matrix factorization for Low-rank tensor completion
    • arXiv preprint
    • Y. Xu, R. Hao, W. Yin et al. Parallel Matrix factorization for Low-rank tensor completion. arXiv preprint, 2013. http://arXiv:1312.1254.
    • (2013)
    • Xu, Y.1    Hao, R.2    Yin, W.3
  • 13
    • 84907389781 scopus 로고    scopus 로고
    • Low-rank tensor completion by Riemannian optimization
    • BIT Numer. Math
    • D. Kressner, M. Steinlechner, B. Vandereycken, Low-rank tensor completion by Riemannian optimization, BIT Numer. Math. (2013) 1-22.
    • (2013) , pp. 1-22
    • Kressner, D.1    Steinlechner, M.2    Vandereycken, B.3
  • 14
    • 84894640150 scopus 로고    scopus 로고
    • Learning with tensors: a framework based on convex optimization and spectral regularization
    • M. Signoretto, Q.T. Dinh, L.D. Lathauwer, J.A.K. Suykens, Learning with tensors: a framework based on convex optimization and spectral regularization, Mach. Learn. (2013) 1-49.
    • (2013) Mach. Learn , pp. 1-49
    • Signoretto, M.1    Dinh, Q.T.2    Lathauwer, L.D.3    Suykens, J.A.K.4
  • 15
    • 84899013687 scopus 로고    scopus 로고
    • Low-rank matrix and tensor completion via adaptive sampling
    • Advances in Neural Information Processing Systems
    • A. Krishnamurthy, A. Singh, Low-rank matrix and tensor completion via adaptive sampling, in: Advances in Neural Information Processing Systems, 2013, pp. 836-844.
    • (2013) , pp. 836-844
    • Krishnamurthy, A.1    Singh, A.2
  • 16
    • 84898929494 scopus 로고    scopus 로고
    • A new convex relaxation for tensor completion
    • Advances in Neural Information Processing Systems
    • B. Romera-Paredes, M. Pontil, A new convex relaxation for tensor completion, in: Advances in Neural Information Processing Systems, 2013, pp. 2967-2975.
    • (2013) , pp. 2967-2975
    • Romera-Paredes, B.1    Pontil, M.2
  • 17
    • 84921045491 scopus 로고    scopus 로고
    • On Tensor Completion via Nuclear Norm Minimization
    • arXiv preprint
    • M. Yuan, C. H. Zhang. On Tensor Completion via Nuclear Norm Minimization. arXiv preprint, 2014. http://arXiv:1405.1773.
    • (2014)
    • Yuan, M.1    Zhang, C.H.2
  • 18
    • 84921045490 scopus 로고    scopus 로고
    • Novel factorization strategies for higher order tensors: implications for completion and recovery of multilinear data
    • arXiv preprint
    • Z. Zhang, G. Ely, S. Aeron, N. Hao, M. Kilmer, Novel factorization strategies for higher order tensors: implications for completion and recovery of multilinear data, arXiv preprint, 2013. http://arXiv:1307.0805.
    • (2013)
    • Zhang, Z.1    Ely, G.2    Aeron, S.3    Hao, N.4    Kilmer, M.5
  • 19
    • 84890455806 scopus 로고    scopus 로고
    • Tensor completion through multiple Kronecker product decomposition
    • ICASSP
    • A.H. Phan, A. Cichocki, et al., Tensor completion through multiple Kronecker product decomposition, in: ICASSP, 2013, pp. 3233-3237.
    • (2013) , pp. 3233-3237
    • Phan, A.H.1    Cichocki, A.2
  • 20
    • 84921045488 scopus 로고    scopus 로고
    • Tensor completion in hierarchical tensor representations
    • arXiv preprint
    • H. Rauhut, R. Schneider, Z. Stojanac, Tensor completion in hierarchical tensor representations, arXiv preprint, 2014. http://arXiv:1404.3905.
    • (2014)
    • Rauhut, H.1    Schneider, R.2    Stojanac, Z.3
  • 21
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101(476):1418-1429.
    • (2006) J. Am. Stat. Assoc. , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 22
    • 33846193774 scopus 로고    scopus 로고
    • A note on the lasso and related procedures in model selection
    • Leng C., Lin Y., Wahba G. A note on the lasso and related procedures in model selection. Stat. Sin. 2006, 16:1273-1284.
    • (2006) Stat. Sin. , vol.16 , pp. 1273-1284
    • Leng, C.1    Lin, Y.2    Wahba, G.3
  • 23
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J., Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96(456):1348-1360.
    • (2001) J. Am. Stat. Assoc. , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 24
    • 82655182661 scopus 로고    scopus 로고
    • Optimal selection of reduced rank estimators of high-dimensional matrices
    • Bunea F., She Y., Wegkamp M. Optimal selection of reduced rank estimators of high-dimensional matrices. Ann. Stat. 2011, 39(2):1282-1309.
    • (2011) Ann. Stat. , vol.39 , Issue.2 , pp. 1282-1309
    • Bunea, F.1    She, Y.2    Wegkamp, M.3
  • 25
  • 26
    • 34548724437 scopus 로고    scopus 로고
    • Exact reconstruction of sparse signals via nonconvex minimization
    • Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 2007, 14(10):707-710.
    • (2007) IEEE Signal Process. Lett. , vol.14 , Issue.10 , pp. 707-710
    • Chartrand, R.1
  • 27
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • Zhang C. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38(2):894-942.
    • (2010) Ann. Stat. , vol.38 , Issue.2 , pp. 894-942
    • Zhang, C.1
  • 28
    • 84871532743 scopus 로고    scopus 로고
    • A general theory of concave regularization for high dimensional sparse estimation problems
    • Zhang C., Zhang T. A general theory of concave regularization for high dimensional sparse estimation problems. Stat. Sci. 2012, 27(4):576-593.
    • (2012) Stat. Sci. , vol.27 , Issue.4 , pp. 576-593
    • Zhang, C.1    Zhang, T.2
  • 29
    • 84902449177 scopus 로고    scopus 로고
    • Strong oracle optimality of folded concave penalized estimation
    • Fan J., Xue L., Zou H. Strong oracle optimality of folded concave penalized estimation. Ann. Stat. 2014, 42(3):819-849.
    • (2014) Ann. Stat. , vol.42 , Issue.3 , pp. 819-849
    • Fan, J.1    Xue, L.2    Zou, H.3
  • 30
    • 84896062135 scopus 로고    scopus 로고
    • Nonconvex relaxation approaches to robust matrix recovery
    • Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence
    • S. Wang, D. Liu, Z. Zhang, Nonconvex relaxation approaches to robust matrix recovery, in: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, 2013, pp. 1764-1770.
    • (2013) , pp. 1764-1770
    • Wang, S.1    Liu, D.2    Zhang, Z.3
  • 31
    • 84886506224 scopus 로고    scopus 로고
    • A nearly unbiased matrix completion approach
    • Proceedings of ECML/PKDD
    • D. Liu, T. Zhou, Q. Qian, C. Xu, Z. Zhang, A nearly unbiased matrix completion approach, in: Proceedings of ECML/PKDD, 2013, pp. 210-225.
    • (2013) , pp. 210-225
    • Liu, D.1    Zhou, T.2    Qian, Q.3    Xu, C.4    Zhang, Z.5
  • 32
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • Cai J.F., Candes E.J., Shen Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20(4):1956-1982.
    • (2010) SIAM J. Optim. , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.F.1    Candes, E.J.2    Shen, Z.3
  • 33
    • 77956944781 scopus 로고    scopus 로고
    • Spectral regularization algorithms for learning large incomplete matrices
    • Mazumder R., Hastie T., Tibshirani R. Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 2010, 11(2):2287-2322.
    • (2010) J. Mach. Learn. Res. , vol.11 , Issue.2 , pp. 2287-2322
    • Mazumder, R.1    Hastie, T.2    Tibshirani, R.3
  • 34
    • 77950023906 scopus 로고    scopus 로고
    • Optimization transfer using surrogate objective functions (with discussion)
    • Lange K., Hunter D., Yang I. Optimization transfer using surrogate objective functions (with discussion). J. Comput. Graph. Stat. 2000, 9(1):1-20.
    • (2000) J. Comput. Graph. Stat. , vol.9 , Issue.1 , pp. 1-20
    • Lange, K.1    Hunter, D.2    Yang, I.3
  • 35
    • 26444617168 scopus 로고    scopus 로고
    • Variable selection using MM algorithm
    • Hunter R., Li R. Variable selection using MM algorithm. Ann. Stat. 2005, 33(4):1617-1642.
    • (2005) Ann. Stat. , vol.33 , Issue.4 , pp. 1617-1642
    • Hunter, R.1    Li, R.2
  • 36
    • 0000808747 scopus 로고
    • A gradient algorithm locally equivalent to the EM algorithm
    • Lange K. A gradient algorithm locally equivalent to the EM algorithm. J. R. Stat. Soc.: Ser. B 1995, 57(2):425-437.
    • (1995) J. R. Stat. Soc.: Ser. B , vol.57 , Issue.2 , pp. 425-437
    • Lange, K.1
  • 37
    • 0006325557 scopus 로고
    • One-step Huber estimates in the linear model
    • Bickel P. One-step Huber estimates in the linear model. J. Am. Stat. Assoc. 1975, 70(350):428-434.
    • (1975) J. Am. Stat. Assoc. , vol.70 , Issue.350 , pp. 428-434
    • Bickel, P.1
  • 38
    • 77955690054 scopus 로고    scopus 로고
    • The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices
    • arXiv preprint
    • Z. Lin, M. Chen, Y. Ma, The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices, arXiv preprint, 2010. http://arXiv:1009.5055.
    • (2010)
    • Lin, Z.1    Chen, M.2    Ma, Y.3
  • 40
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • Candes E.J., Li X., Ma Y., Wright J. Robust principal component analysis?. J. ACM 2011, 58(3):1-37.
    • (2011) J. ACM , vol.58 , Issue.3 , pp. 1-37
    • Candes, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 41
    • 84897553151 scopus 로고    scopus 로고
    • Robust low rank tensor recovery. models and algorithms
    • Goldfarb D., Qin Z. Robust low rank tensor recovery. models and algorithms. SIAM J. Matrix Anal. Appl. 2014, 35(1):225-253.
    • (2014) SIAM J. Matrix Anal. Appl. , vol.35 , Issue.1 , pp. 225-253
    • Goldfarb, D.1    Qin, Z.2
  • 42
    • 84921045487 scopus 로고    scopus 로고
    • http://www.media.xiph.org/video/derf/.
  • 43
    • 84921045486 scopus 로고    scopus 로고
    • http://www1.cs.columbia.edu/CAVE/databases/multispectral/.
  • 44
    • 84921045485 scopus 로고    scopus 로고
    • http://www.osirix-viewer.com/datasets/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.