-
1
-
-
0034446966
-
Image inpainting, in: ACM SIGGRAPH
-
M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester. Image inpainting, in: ACM SIGGRAPH, 2000, pp. 417-424.
-
(2000)
, pp. 417-424
-
-
Bertalmio, M.1
Sapiro, G.2
Caselles, V.3
Ballester, C.4
-
2
-
-
34548279916
-
Spatio-temporal inpainting for recovering texture maps of occluded building facades
-
Korah T., Rasmussen C. Spatio-temporal inpainting for recovering texture maps of occluded building facades. IEEE Trans. Image Process. 2007, 16(7):2262-2271.
-
(2007)
IEEE Trans. Image Process.
, vol.16
, Issue.7
, pp. 2262-2271
-
-
Korah, T.1
Rasmussen, C.2
-
3
-
-
33645574703
-
Example-based 3D scan completion
-
The Symposium on Geometry Processing
-
M. Pauly, N. J. Mitra, J. Giesen, M. Gross, L. Guibas. Example-based 3D scan completion, in: The Symposium on Geometry Processing, 2005, pp. 23-32.
-
(2005)
, pp. 23-32
-
-
Pauly, M.1
Mitra, N.J.2
Giesen, J.3
Gross, M.4
Guibas, L.5
-
4
-
-
84870175618
-
Tensor completion for estimating missing values in visual data
-
Liu J., Musialski P., Wonka P., Ye J. Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35(1):208-220.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.1
, pp. 208-220
-
-
Liu, J.1
Musialski, P.2
Wonka, P.3
Ye, J.4
-
5
-
-
68649096448
-
Tensor decompositions and applications
-
Kolad T.G., Bader B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51(3):455-500.
-
(2009)
SIAM Rev.
, vol.51
, Issue.3
, pp. 455-500
-
-
Kolad, T.G.1
Bader, B.W.2
-
6
-
-
71049116435
-
Exact matrix completion via convex optimization
-
Candes E.J., Recht B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9(6):717-772.
-
(2009)
Found. Comput. Math.
, vol.9
, Issue.6
, pp. 717-772
-
-
Candes, E.J.1
Recht, B.2
-
7
-
-
77951528523
-
The power of convex relaxation. near-optimal matrix completion
-
Candes E.J., Tao T. The power of convex relaxation. near-optimal matrix completion. IEEE Trans. Inf. Theory 2009, 56(5):2053-2080.
-
(2009)
IEEE Trans. Inf. Theory
, vol.56
, Issue.5
, pp. 2053-2080
-
-
Candes, E.J.1
Tao, T.2
-
8
-
-
79551661156
-
Tensor completion and low-n-rank tensor recovery via convex optimization
-
Gandy S., Recht B., Yamada I. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 2011, 27(2):025010.
-
(2011)
Inverse Probl.
, vol.27
, Issue.2
, pp. 025010
-
-
Gandy, S.1
Recht, B.2
Yamada, I.3
-
9
-
-
79957619696
-
On the extension of trace norm to tensors
-
NIPS Workshop on Tensors, Kernels, and Machine Learning
-
R. Tomioka, H. Kohei, H. Kashima, On the extension of trace norm to tensors, in: NIPS Workshop on Tensors, Kernels, and Machine Learning, 2010.
-
(2010)
-
-
Tomioka, R.1
Kohei, H.2
Kashima, H.3
-
10
-
-
84921045492
-
A Splitting Augmented Lagrangian Method for Low Multilinear-Rank Tensor Recovery
-
arXiv preprint
-
L. Yang, Z. H. Huang, Y. Li. A Splitting Augmented Lagrangian Method for Low Multilinear-Rank Tensor Recovery. arXiv preprint, 2013. http://arXiv:1310.1769.
-
(2013)
-
-
Yang, L.1
Huang, Z.H.2
Li, Y.3
-
11
-
-
84877880608
-
A fixed point iterative method for low n-rank tensor pursuit
-
Yang L., Zheng Z.H., Shi X.J. A fixed point iterative method for low n-rank tensor pursuit. IEEE Trans. Signal Process. 2013, 61(11):2952-2962.
-
(2013)
IEEE Trans. Signal Process.
, vol.61
, Issue.11
, pp. 2952-2962
-
-
Yang, L.1
Zheng, Z.H.2
Shi, X.J.3
-
12
-
-
84919948548
-
Parallel Matrix factorization for Low-rank tensor completion
-
arXiv preprint
-
Y. Xu, R. Hao, W. Yin et al. Parallel Matrix factorization for Low-rank tensor completion. arXiv preprint, 2013. http://arXiv:1312.1254.
-
(2013)
-
-
Xu, Y.1
Hao, R.2
Yin, W.3
-
13
-
-
84907389781
-
Low-rank tensor completion by Riemannian optimization
-
BIT Numer. Math
-
D. Kressner, M. Steinlechner, B. Vandereycken, Low-rank tensor completion by Riemannian optimization, BIT Numer. Math. (2013) 1-22.
-
(2013)
, pp. 1-22
-
-
Kressner, D.1
Steinlechner, M.2
Vandereycken, B.3
-
14
-
-
84894640150
-
Learning with tensors: a framework based on convex optimization and spectral regularization
-
M. Signoretto, Q.T. Dinh, L.D. Lathauwer, J.A.K. Suykens, Learning with tensors: a framework based on convex optimization and spectral regularization, Mach. Learn. (2013) 1-49.
-
(2013)
Mach. Learn
, pp. 1-49
-
-
Signoretto, M.1
Dinh, Q.T.2
Lathauwer, L.D.3
Suykens, J.A.K.4
-
15
-
-
84899013687
-
Low-rank matrix and tensor completion via adaptive sampling
-
Advances in Neural Information Processing Systems
-
A. Krishnamurthy, A. Singh, Low-rank matrix and tensor completion via adaptive sampling, in: Advances in Neural Information Processing Systems, 2013, pp. 836-844.
-
(2013)
, pp. 836-844
-
-
Krishnamurthy, A.1
Singh, A.2
-
16
-
-
84898929494
-
A new convex relaxation for tensor completion
-
Advances in Neural Information Processing Systems
-
B. Romera-Paredes, M. Pontil, A new convex relaxation for tensor completion, in: Advances in Neural Information Processing Systems, 2013, pp. 2967-2975.
-
(2013)
, pp. 2967-2975
-
-
Romera-Paredes, B.1
Pontil, M.2
-
17
-
-
84921045491
-
On Tensor Completion via Nuclear Norm Minimization
-
arXiv preprint
-
M. Yuan, C. H. Zhang. On Tensor Completion via Nuclear Norm Minimization. arXiv preprint, 2014. http://arXiv:1405.1773.
-
(2014)
-
-
Yuan, M.1
Zhang, C.H.2
-
18
-
-
84921045490
-
Novel factorization strategies for higher order tensors: implications for completion and recovery of multilinear data
-
arXiv preprint
-
Z. Zhang, G. Ely, S. Aeron, N. Hao, M. Kilmer, Novel factorization strategies for higher order tensors: implications for completion and recovery of multilinear data, arXiv preprint, 2013. http://arXiv:1307.0805.
-
(2013)
-
-
Zhang, Z.1
Ely, G.2
Aeron, S.3
Hao, N.4
Kilmer, M.5
-
19
-
-
84890455806
-
Tensor completion through multiple Kronecker product decomposition
-
ICASSP
-
A.H. Phan, A. Cichocki, et al., Tensor completion through multiple Kronecker product decomposition, in: ICASSP, 2013, pp. 3233-3237.
-
(2013)
, pp. 3233-3237
-
-
Phan, A.H.1
Cichocki, A.2
-
20
-
-
84921045488
-
Tensor completion in hierarchical tensor representations
-
arXiv preprint
-
H. Rauhut, R. Schneider, Z. Stojanac, Tensor completion in hierarchical tensor representations, arXiv preprint, 2014. http://arXiv:1404.3905.
-
(2014)
-
-
Rauhut, H.1
Schneider, R.2
Stojanac, Z.3
-
21
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
Zou H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101(476):1418-1429.
-
(2006)
J. Am. Stat. Assoc.
, vol.101
, Issue.476
, pp. 1418-1429
-
-
Zou, H.1
-
22
-
-
33846193774
-
A note on the lasso and related procedures in model selection
-
Leng C., Lin Y., Wahba G. A note on the lasso and related procedures in model selection. Stat. Sin. 2006, 16:1273-1284.
-
(2006)
Stat. Sin.
, vol.16
, pp. 1273-1284
-
-
Leng, C.1
Lin, Y.2
Wahba, G.3
-
23
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan J., Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96(456):1348-1360.
-
(2001)
J. Am. Stat. Assoc.
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
24
-
-
82655182661
-
Optimal selection of reduced rank estimators of high-dimensional matrices
-
Bunea F., She Y., Wegkamp M. Optimal selection of reduced rank estimators of high-dimensional matrices. Ann. Stat. 2011, 39(2):1282-1309.
-
(2011)
Ann. Stat.
, vol.39
, Issue.2
, pp. 1282-1309
-
-
Bunea, F.1
She, Y.2
Wegkamp, M.3
-
26
-
-
34548724437
-
Exact reconstruction of sparse signals via nonconvex minimization
-
Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 2007, 14(10):707-710.
-
(2007)
IEEE Signal Process. Lett.
, vol.14
, Issue.10
, pp. 707-710
-
-
Chartrand, R.1
-
27
-
-
77649284492
-
Nearly unbiased variable selection under minimax concave penalty
-
Zhang C. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38(2):894-942.
-
(2010)
Ann. Stat.
, vol.38
, Issue.2
, pp. 894-942
-
-
Zhang, C.1
-
28
-
-
84871532743
-
A general theory of concave regularization for high dimensional sparse estimation problems
-
Zhang C., Zhang T. A general theory of concave regularization for high dimensional sparse estimation problems. Stat. Sci. 2012, 27(4):576-593.
-
(2012)
Stat. Sci.
, vol.27
, Issue.4
, pp. 576-593
-
-
Zhang, C.1
Zhang, T.2
-
29
-
-
84902449177
-
Strong oracle optimality of folded concave penalized estimation
-
Fan J., Xue L., Zou H. Strong oracle optimality of folded concave penalized estimation. Ann. Stat. 2014, 42(3):819-849.
-
(2014)
Ann. Stat.
, vol.42
, Issue.3
, pp. 819-849
-
-
Fan, J.1
Xue, L.2
Zou, H.3
-
30
-
-
84896062135
-
Nonconvex relaxation approaches to robust matrix recovery
-
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence
-
S. Wang, D. Liu, Z. Zhang, Nonconvex relaxation approaches to robust matrix recovery, in: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, 2013, pp. 1764-1770.
-
(2013)
, pp. 1764-1770
-
-
Wang, S.1
Liu, D.2
Zhang, Z.3
-
31
-
-
84886506224
-
A nearly unbiased matrix completion approach
-
Proceedings of ECML/PKDD
-
D. Liu, T. Zhou, Q. Qian, C. Xu, Z. Zhang, A nearly unbiased matrix completion approach, in: Proceedings of ECML/PKDD, 2013, pp. 210-225.
-
(2013)
, pp. 210-225
-
-
Liu, D.1
Zhou, T.2
Qian, Q.3
Xu, C.4
Zhang, Z.5
-
32
-
-
77951291046
-
A singular value thresholding algorithm for matrix completion
-
Cai J.F., Candes E.J., Shen Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20(4):1956-1982.
-
(2010)
SIAM J. Optim.
, vol.20
, Issue.4
, pp. 1956-1982
-
-
Cai, J.F.1
Candes, E.J.2
Shen, Z.3
-
33
-
-
77956944781
-
Spectral regularization algorithms for learning large incomplete matrices
-
Mazumder R., Hastie T., Tibshirani R. Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 2010, 11(2):2287-2322.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, Issue.2
, pp. 2287-2322
-
-
Mazumder, R.1
Hastie, T.2
Tibshirani, R.3
-
34
-
-
77950023906
-
Optimization transfer using surrogate objective functions (with discussion)
-
Lange K., Hunter D., Yang I. Optimization transfer using surrogate objective functions (with discussion). J. Comput. Graph. Stat. 2000, 9(1):1-20.
-
(2000)
J. Comput. Graph. Stat.
, vol.9
, Issue.1
, pp. 1-20
-
-
Lange, K.1
Hunter, D.2
Yang, I.3
-
35
-
-
26444617168
-
Variable selection using MM algorithm
-
Hunter R., Li R. Variable selection using MM algorithm. Ann. Stat. 2005, 33(4):1617-1642.
-
(2005)
Ann. Stat.
, vol.33
, Issue.4
, pp. 1617-1642
-
-
Hunter, R.1
Li, R.2
-
36
-
-
0000808747
-
A gradient algorithm locally equivalent to the EM algorithm
-
Lange K. A gradient algorithm locally equivalent to the EM algorithm. J. R. Stat. Soc.: Ser. B 1995, 57(2):425-437.
-
(1995)
J. R. Stat. Soc.: Ser. B
, vol.57
, Issue.2
, pp. 425-437
-
-
Lange, K.1
-
37
-
-
0006325557
-
One-step Huber estimates in the linear model
-
Bickel P. One-step Huber estimates in the linear model. J. Am. Stat. Assoc. 1975, 70(350):428-434.
-
(1975)
J. Am. Stat. Assoc.
, vol.70
, Issue.350
, pp. 428-434
-
-
Bickel, P.1
-
38
-
-
77955690054
-
The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices
-
arXiv preprint
-
Z. Lin, M. Chen, Y. Ma, The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices, arXiv preprint, 2010. http://arXiv:1009.5055.
-
(2010)
-
-
Lin, Z.1
Chen, M.2
Ma, Y.3
-
39
-
-
78751566708
-
Phase transitions for greedy sparse approximation algorithms
-
Blanchard J.D., Cartis C., Tanner J., Thompson A. Phase transitions for greedy sparse approximation algorithms. Appl. Comput. Harmonic Anal. 2011, 30(2):188-203.
-
(2011)
Appl. Comput. Harmonic Anal.
, vol.30
, Issue.2
, pp. 188-203
-
-
Blanchard, J.D.1
Cartis, C.2
Tanner, J.3
Thompson, A.4
-
40
-
-
79960675858
-
Robust principal component analysis?
-
Candes E.J., Li X., Ma Y., Wright J. Robust principal component analysis?. J. ACM 2011, 58(3):1-37.
-
(2011)
J. ACM
, vol.58
, Issue.3
, pp. 1-37
-
-
Candes, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
41
-
-
84897553151
-
Robust low rank tensor recovery. models and algorithms
-
Goldfarb D., Qin Z. Robust low rank tensor recovery. models and algorithms. SIAM J. Matrix Anal. Appl. 2014, 35(1):225-253.
-
(2014)
SIAM J. Matrix Anal. Appl.
, vol.35
, Issue.1
, pp. 225-253
-
-
Goldfarb, D.1
Qin, Z.2
-
42
-
-
84921045487
-
-
http://www.media.xiph.org/video/derf/.
-
-
-
-
43
-
-
84921045486
-
-
http://www1.cs.columbia.edu/CAVE/databases/multispectral/.
-
-
-
-
44
-
-
84921045485
-
-
http://www.osirix-viewer.com/datasets/.
-
-
-
|