메뉴 건너뛰기




Volumn 30, Issue 2, 2011, Pages 188-203

Phase transitions for greedy sparse approximation algorithms

Author keywords

Compressed sensing; Gaussian matrices; Greedy algorithms; Phase transitions; Restricted isometry property; Sparse solutions to underdetermined systems

Indexed keywords

COMPRESSED SENSING; GAUSSIANS; GREEDY ALGORITHMS; RESTRICTED ISOMETRY PROPERTY; SPARSE SOLUTIONS TO UNDERDETERMINED SYSTEMS;

EID: 78751566708     PISSN: 10635203     EISSN: 1096603X     Source Type: Journal    
DOI: 10.1016/j.acha.2010.07.001     Document Type: Article
Times cited : (33)

References (38)
  • 2
    • 65649137930 scopus 로고    scopus 로고
    • Probing the pareto frontier for basis pursuit solutions
    • Ewout van den Berg, and Michael P. Friedlander Probing the pareto frontier for basis pursuit solutions SIAM J. Sci. Comput. 31 2 2008 890 912
    • (2008) SIAM J. Sci. Comput. , vol.31 , Issue.2 , pp. 890-912
    • Van Den Berg, E.1    Friedlander, M.P.2
  • 4
    • 67349272243 scopus 로고    scopus 로고
    • Decay properties for restricted isometry constants
    • Jeffrey D. Blanchard, Coralia Cartis, and Jared Tanner Decay properties for restricted isometry constants IEEE Signal Process. Lett. 16 7 2009 572 575
    • (2009) IEEE Signal Process. Lett. , vol.16 , Issue.7 , pp. 572-575
    • Blanchard, J.D.1    Cartis, C.2    Tanner, J.3
  • 5
    • 79957444557 scopus 로고    scopus 로고
    • Compressed sensing: How sharp is the restricted isometry property?
    • in press
    • Jeffrey D. Blanchard, Coralia Cartis, Jared Tanner, Compressed sensing: How sharp is the restricted isometry property? SIAM Rev., in press.
    • SIAM Rev.
    • Blanchard, J.D.1    Cartis, C.2    Tanner, J.3
  • 7
    • 77955518394 scopus 로고    scopus 로고
    • On support sizes of restricted isometry constants
    • Jeffrey D. Blanchard, and Andrew Thompson On support sizes of restricted isometry constants Appl. Comput. Harmon. Anal. 29 3 2010 382 390
    • (2010) Appl. Comput. Harmon. Anal. , vol.29 , Issue.3 , pp. 382-390
    • Blanchard, J.D.1    Thompson, A.2
  • 8
    • 69949164527 scopus 로고    scopus 로고
    • Iterative hard thresholding for compressed sensing
    • T. Blumensath, and M.E. Davies Iterative hard thresholding for compressed sensing Appl. Comput. Harmon. Anal. 27 3 2009 265 274
    • (2009) Appl. Comput. Harmon. Anal. , vol.27 , Issue.3 , pp. 265-274
    • Blumensath, T.1    Davies, M.E.2
  • 9
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A.M. Bruckstein, David L. Donoho, and Michael Elad From sparse solutions of systems of equations to sparse modeling of signals and images SIAM Rev. 51 1 2009 34 81
    • (2009) SIAM Rev. , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 10
    • 84878104490 scopus 로고    scopus 로고
    • Compressive sampling
    • Eur. Math. Soc. Zürich
    • Emmanuel J. Candès Compressive sampling International Congress of Mathematicians vol. III 2006 Eur. Math. Soc. Zürich 1433 1452
    • (2006) International Congress of Mathematicians , vol.3 , pp. 1433-1452
    • Candès, E.J.1
  • 11
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • Emmanuel J. Candès, and Terence Tao Decoding by linear programming IEEE Trans. Inform. Theory 51 12 2005 4203 4215
    • (2005) IEEE Trans. Inform. Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candès, E.J.1    Tao, T.2
  • 13
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing signal reconstruction
    • W. Dai, and O. Milenkovic Subspace pursuit for compressive sensing signal reconstruction IEEE Trans. Inform. Theory 55 5 2009 2230 2249
    • (2009) IEEE Trans. Inform. Theory , vol.55 , Issue.5 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 16
  • 17
    • 33646479497 scopus 로고    scopus 로고
    • High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension
    • David L. Donoho High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension Discrete Comput. Geom. 35 4 2006 617 652
    • (2006) Discrete Comput. Geom. , vol.35 , Issue.4 , pp. 617-652
    • Donoho, D.L.1
  • 18
    • 77949685085 scopus 로고    scopus 로고
    • Optimally tuned iterative thresholding algorithms for compressed sensing
    • David L. Donoho, and Arian Maleki Optimally tuned iterative thresholding algorithms for compressed sensing IEEE Selected Topics Signal Process. 4 2 2010 330 341
    • (2010) IEEE Selected Topics Signal Process. , vol.4 , Issue.2 , pp. 330-341
    • Donoho, D.L.1    Maleki, A.2
  • 20
    • 22144488449 scopus 로고    scopus 로고
    • Sparse nonnegative solutions of underdetermined linear equations by linear programming
    • David L. Donoho, and Jared Tanner Sparse nonnegative solutions of underdetermined linear equations by linear programming Proc. Natl. Acad. Sci. USA 102 27 2005 9446 9451
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , Issue.27 , pp. 9446-9451
    • Donoho, D.L.1    Tanner, J.2
  • 21
    • 57349138185 scopus 로고    scopus 로고
    • Counting faces of randomly projected polytopes when the projection radically lowers dimension
    • David L. Donoho, and Jared Tanner Counting faces of randomly projected polytopes when the projection radically lowers dimension J. Amer. Math. Soc. 22 1 2009 1 53
    • (2009) J. Amer. Math. Soc. , vol.22 , Issue.1 , pp. 1-53
    • Donoho, D.L.1    Tanner, J.2
  • 22
    • 77953126052 scopus 로고    scopus 로고
    • Precise undersampling theorems
    • David L. Donoho, and Jared Tanner Precise undersampling theorems Proc. IEEE 98 6 2010 913 924
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 913-924
    • Donoho, D.L.1    Tanner, J.2
  • 23
    • 55349134896 scopus 로고    scopus 로고
    • Fast solution of l1 minimization problems when the solution may be sparse
    • David L. Donoho, and Yaakov Tsaig Fast solution of l1 minimization problems when the solution may be sparse IEEE Trans. Inform. Theory 54 11 2008 4789 4812
    • (2008) IEEE Trans. Inform. Theory , vol.54 , Issue.11 , pp. 4789-4812
    • Donoho, D.L.1    Tsaig, Y.2
  • 25
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • Mário A.T. Figueiredo, Robert D. Nowak, and Stephen J. Wright Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems IEEE Selected Topics Signal Process. 1 4 2007 586 597
    • (2007) IEEE Selected Topics Signal Process. , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 26
    • 62549128663 scopus 로고    scopus 로고
    • Sparsest solutions of underdetermined linear systems via q-minimization for 0
    • S. Foucart, and M.-J. Lai Sparsest solutions of underdetermined linear systems via q -minimization for 0 < q ≤ 1 Appl. Comput. Harmon. Anal. 26 3 2009 395 407
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , Issue.3 , pp. 395-407
    • Foucart, S.1    Lai, M.-J.2
  • 27
    • 71149117997 scopus 로고    scopus 로고
    • Gradient descent with sparsification: An iterative algorithm for sparse recovery with restricted isometry property
    • ACM New York, NY, USA
    • Rahul Garg, and Rohit Khandekar Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning 2009 ACM New York, NY, USA 337 344
    • (2009) ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning , pp. 337-344
    • Garg, R.1    Khandekar, R.2
  • 28
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • B.K. Natarajan Sparse approximate solutions to linear systems SIAM J. Comput. 24 2 1995 227 234
    • (1995) SIAM J. Comput. , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.K.1
  • 29
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    • Deanna Needell, and Joel Tropp CoSaMP: Iterative signal recovery from incomplete and inaccurate samples Appl. Comput. Harmon. Anal. 26 3 2009 301 321
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.2
  • 30
    • 64749092799 scopus 로고    scopus 로고
    • Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit
    • Deanna Needell, and Roman Vershynin Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit Found. Comput. Math. 9 3 2009 317 334
    • (2009) Found. Comput. Math. , vol.9 , Issue.3 , pp. 317-334
    • Needell, D.1    Vershynin, R.2
  • 32
    • 67651063011 scopus 로고    scopus 로고
    • CORE Discussion Paper 2007/76, Center for Operations Research and Econometrics, Université Catholique de Louvain, Belgium
    • Yurii Nesterov, Gradient methods for minimizing composite objective functions, CORE Discussion Paper 2007/76, Center for Operations Research and Econometrics, Université Catholique de Louvain, Belgium, 2007.
    • (2007) Gradient Methods for Minimizing Composite Objective Functions
    • Nesterov, Y.1
  • 35
    • 52349092455 scopus 로고    scopus 로고
    • On sparse reconstruction from Fourier and Gaussian measurements
    • Mark Rudelson, and Roman Vershynin On sparse reconstruction from Fourier and Gaussian measurements Comm. Pure Appl. Math. 61 8 2008 1025 1045
    • (2008) Comm. Pure Appl. Math. , vol.61 , Issue.8 , pp. 1025-1045
    • Rudelson, M.1    Vershynin, R.2
  • 36
    • 84911837213 scopus 로고
    • Communication in the presence of noise
    • C.E. Shannon Communication in the presence of noise Proc. Inst. of Radio Engineers 37 1 1949 10 21
    • (1949) Proc. Inst. of Radio Engineers , vol.37 , Issue.1 , pp. 10-21
    • Shannon, C.E.1
  • 37
    • 77952743135 scopus 로고    scopus 로고
    • Computational methods for sparse solution of linear inverse problems
    • Joel A. Tropp, and Steven J. Wright Computational methods for sparse solution of linear inverse problems Proc. IEEE 98 6 2010 948 958
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 948-958
    • Tropp, J.A.1    Wright, S.J.2
  • 38
    • 64549099406 scopus 로고    scopus 로고
    • Compressed sensing over the Grassmann manifold: A unified analytical framework
    • W. Xu, B. Hassibi, Compressed sensing over the Grassmann manifold: A unified analytical framework, in: Forty-Sixth Annual Allerton Conference, 2008.
    • (2008) Forty-Sixth Annual Allerton Conference
    • Xu, W.1    Hassibi, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.