메뉴 건너뛰기




Volumn 99, Issue , 2013, Pages 241-249

Joint geometry and variability for image recognition

Author keywords

Dimensionality reduction; Geometry; NPE; Variability

Indexed keywords

ADJACENCY GRAPHS; DIMENSIONALITY REDUCTION; GEOMETRICAL STRUCTURE; HIGH DIMENSIONAL DATA; JOINT GEOMETRY; LINEAR APPROACH; NEIGHBORHOOD PRESERVING EMBEDDING; NPE; OBJECTIVE FUNCTIONS; REAL-WORLD IMAGE; TRAINING DATA; VARIABILITY; VARIABILITY ANALYSIS;

EID: 84867873734     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.06.027     Document Type: Article
Times cited : (4)

References (46)
  • 3
    • 34250487811 scopus 로고
    • Gaussian elimination is not optimal
    • Strassen V. Gaussian elimination is not optimal. Numer. Math. 1969, 13:54-356.
    • (1969) Numer. Math. , vol.13 , pp. 54-356
    • Strassen, V.1
  • 4
    • 36048992886 scopus 로고    scopus 로고
    • General tensor discriminant analysis and Gabor features for gait recognition
    • Tao D., Li X., Wu X., Maybank S.J. General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2007, 29(10):1700-1717.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.10 , pp. 1700-1717
    • Tao, D.1    Li, X.2    Wu, X.3    Maybank, S.J.4
  • 5
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: unsupervised learning of low dimensional manifolds
    • Saul L.K., Roweis S.T. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 2003, 4:119-155.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 6
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290(5500):2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 7
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15(6):1373-1396.
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 12
    • 77953618667 scopus 로고    scopus 로고
    • Two-dimensional supervised local similarity and diversity projection
    • Gao Q., Xu H., Li Y., Xie D. Two-dimensional supervised local similarity and diversity projection. Pattern Recognition 2010, 43(10):3359-3363.
    • (2010) Pattern Recognition , vol.43 , Issue.10 , pp. 3359-3363
    • Gao, Q.1    Xu, H.2    Li, Y.3    Xie, D.4
  • 14
    • 78650245184 scopus 로고    scopus 로고
    • Sparse two-dimensional local discriminant projections for feature extraction
    • Lai Z., Wan M., Jin Z., Yang J. Sparse two-dimensional local discriminant projections for feature extraction. Neurocomputing 2011, 74:629-637.
    • (2011) Neurocomputing , vol.74 , pp. 629-637
    • Lai, Z.1    Wan, M.2    Jin, Z.3    Yang, J.4
  • 15
    • 80054823948 scopus 로고    scopus 로고
    • Complex object corresponding construction in two- dimensional animation
    • Yu J., Liu D., Tao D., Seah H.S. Complex object corresponding construction in two- dimensional animation. IEEE Trans. Image Processing 2011, 20(11):3257-3269.
    • (2011) IEEE Trans. Image Processing , vol.20 , Issue.11 , pp. 3257-3269
    • Yu, J.1    Liu, D.2    Tao, D.3    Seah, H.S.4
  • 16
    • 70350741199 scopus 로고    scopus 로고
    • One improvement to two-dimensional locality preserving projection method for use with face recognition
    • Xu Y., Feng G., Zhao Y. One improvement to two-dimensional locality preserving projection method for use with face recognition. Neurocomputing 2009, 73:245-249.
    • (2009) Neurocomputing , vol.73 , pp. 245-249
    • Xu, Y.1    Feng, G.2    Zhao, Y.3
  • 18
    • 82055180327 scopus 로고    scopus 로고
    • Subspace indexing model on grassmann manifold for image search
    • Wang X., Li Z., Tao D. Subspace indexing model on grassmann manifold for image search. IEEE Trans. Image Processing 2011, 20(9):2627-2635.
    • (2011) IEEE Trans. Image Processing , vol.20 , Issue.9 , pp. 2627-2635
    • Wang, X.1    Li, Z.2    Tao, D.3
  • 21
    • 36248950635 scopus 로고    scopus 로고
    • Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique
    • Kokiopoulou E., Saad Y. Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29(12):2143-2156.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.12 , pp. 2143-2156
    • Kokiopoulou, E.1    Saad, Y.2
  • 22
    • 68549120964 scopus 로고    scopus 로고
    • Patch alignment for dimensionality reduction
    • Zhang T., Tao D., Li X., Yang J. Patch alignment for dimensionality reduction. IEEE Trans Knowl. Data Eng. 2009, 21(9):1299-1313.
    • (2009) IEEE Trans Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1299-1313
    • Zhang, T.1    Tao, D.2    Li, X.3    Yang, J.4
  • 23
    • 77955090717 scopus 로고    scopus 로고
    • Discriminative orthogonal neighborhood-preserving projections for classification
    • Zhang T., Huang K., Li X., Yang J., Tao D. Discriminative orthogonal neighborhood-preserving projections for classification. IEEE Trans. Syst. Man, Cybern.: Part B 2010, 40(1):253-263.
    • (2010) IEEE Trans. Syst. Man, Cybern.: Part B , vol.40 , Issue.1 , pp. 253-263
    • Zhang, T.1    Huang, K.2    Li, X.3    Yang, J.4    Tao, D.5
  • 24
    • 69049112203 scopus 로고    scopus 로고
    • Sparsity preserving projections with applications to face recognition
    • Qiao L., Chen S., Tan X. Sparsity preserving projections with applications to face recognition. Pattern Recognition 2010, 43:331-341.
    • (2010) Pattern Recognition , vol.43 , pp. 331-341
    • Qiao, L.1    Chen, S.2    Tan, X.3
  • 27
    • 79953062921 scopus 로고    scopus 로고
    • Neighborhood preserving regression for image retrieval
    • Lu K., Zhao J. Neighborhood preserving regression for image retrieval. Neurocomputing 2011, 74:1467-1473.
    • (2011) Neurocomputing , vol.74 , pp. 1467-1473
    • Lu, K.1    Zhao, J.2
  • 28
    • 79960810210 scopus 로고    scopus 로고
    • Manifold elastic net: a unified framework for sparse dimension reduction
    • Zhou T., Tao D., Wu X. Manifold elastic net: a unified framework for sparse dimension reduction. Data Min. Knowl. Disc. 2011, 22(3):340-371.
    • (2011) Data Min. Knowl. Disc. , vol.22 , Issue.3 , pp. 340-371
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 29
    • 84862813470 scopus 로고    scopus 로고
    • Two-dimensional margin, similarity and variation embedding
    • Gao Q., Zhang H., Liu J. Two-dimensional margin, similarity and variation embedding. Neurocomputing 2012, 86(6):179-183.
    • (2012) Neurocomputing , vol.86 , Issue.6 , pp. 179-183
    • Gao, Q.1    Zhang, H.2    Liu, J.3
  • 30
    • 84861833031 scopus 로고    scopus 로고
    • Enhanced fisher discriminant criterion for image recognition
    • Gao Q., Liu J., Zhang H., Hou J., Yang X. Enhanced fisher discriminant criterion for image recognition. Pattern Recognition 2012, 45(10):3717-3724.
    • (2012) Pattern Recognition , vol.45 , Issue.10 , pp. 3717-3724
    • Gao, Q.1    Liu, J.2    Zhang, H.3    Hou, J.4    Yang, X.5
  • 31
    • 79953054794 scopus 로고    scopus 로고
    • Max-min distance analysis by using sequential SDP relaxation for dimension reduction
    • Bian W., Tao D. Max-min distance analysis by using sequential SDP relaxation for dimension reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(5):1037-1050.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.5 , pp. 1037-1050
    • Bian, W.1    Tao, D.2
  • 33
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 34
    • 0026065565 scopus 로고
    • Eigenfaces for recognition
    • Turk M., Pentland A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3(1):71-86.
    • (1991) J. Cogn. Neurosci. , vol.3 , Issue.1 , pp. 71-86
    • Turk, M.1    Pentland, A.2
  • 37
    • 0742268833 scopus 로고    scopus 로고
    • Two-Dimensional P.C.A.: a new approach to appearance-based face representation and recognition
    • Yang J., Zhang D., Frangi A.F., Yang J.Y. Two-Dimensional P.C.A.: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal. Mach. Intell. 2004, 26(1):131-137.
    • (2004) IEEE Trans Pattern Anal. Mach. Intell. , vol.26 , Issue.1 , pp. 131-137
    • Yang, J.1    Zhang, D.2    Frangi, A.F.3    Yang, J.Y.4
  • 39
    • 84867891114 scopus 로고    scopus 로고
    • COIL20 database,.
    • COIL20 database,. http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
  • 40
    • 79959579027 scopus 로고    scopus 로고
    • Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
    • Guan N., Tao D., Luo Z., Yuan B. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Trans. Image Processing 2011, 20(7):2030-2048.
    • (2011) IEEE Trans. Image Processing , vol.20 , Issue.7 , pp. 2030-2048
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 41
    • 51949105131 scopus 로고    scopus 로고
    • Non-negative graph embedding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • J. Yang, S. Yang, Y. Fun, X. Li, T. Huang, Non-negative graph embedding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008.
    • (2008)
    • Yang, J.1    Yang, S.2    Fun, Y.3    Li, X.4    Huang, T.5
  • 45
    • 84865442402 scopus 로고    scopus 로고
    • Online non-negative matrix factorization with robust stochastic approximation.
    • N. Guan, D. Tao, Z. Luo, B. Yuan, Online non-negative matrix factorization with robust stochastic approximation. IEEE Trans. Neural Networks. Learn. Syst. 23 (7) (2012) 1087-1099.
    • (2012) IEEE Trans. Neural Networks. Learn. Syst. , vol.23 , Issue.7 , pp. 1087-1099
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 46
    • 84861164231 scopus 로고    scopus 로고
    • NeNMF: an optimal gradient method for nonnegative matrix factorization
    • Guan N., Tao D., Luo Z., Yuan B. NeNMF: an optimal gradient method for nonnegative matrix factorization. IEEE Trans. Signal Processing 2012, 60(6):2882-2898.
    • (2012) IEEE Trans. Signal Processing , vol.60 , Issue.6 , pp. 2882-2898
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.