메뉴 건너뛰기




Volumn 152, Issue , 2015, Pages 388-402

A new automatic mass detection method for breast cancer with false positive reduction

Author keywords

Breast cancer; Level set; Local binary pattern; Mass detection; Support vector machine

Indexed keywords

COMPUTER AIDED DIAGNOSIS; DISEASES; MAMMOGRAPHY; PATTERN RECOGNITION; SUPPORT VECTOR MACHINES; TEXTURES; X RAY SCREENS;

EID: 84921048023     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.10.040     Document Type: Article
Times cited : (82)

References (55)
  • 1
    • 67650385302 scopus 로고    scopus 로고
    • Breast Cancer Facts & Figures 2013-2014
    • Technical Report, American Cancer Society, Inc., Atlanta
    • A.C. Society, Breast Cancer Facts & Figures 2013-2014, Technical Report, American Cancer Society, Inc., Atlanta, 2013.
    • (2013)
    • Society, A.C.1
  • 2
    • 63349107095 scopus 로고    scopus 로고
    • Computer-aided detection and diagnosis of breast cancer with mammography. recent advances
    • Tang J., Rangayyan R., Xu J., Naqa I., Yang Y. Computer-aided detection and diagnosis of breast cancer with mammography. recent advances. IEEE Trans. Inf. Technol. Biomed. 2009, 13:236-251.
    • (2009) IEEE Trans. Inf. Technol. Biomed. , vol.13 , pp. 236-251
    • Tang, J.1    Rangayyan, R.2    Xu, J.3    Naqa, I.4    Yang, Y.5
  • 4
    • 84861320259 scopus 로고    scopus 로고
    • Detection of cancerous masses in mammograms by template matching. optimization of template brightness distribution by means of evolutionary algorithm
    • Bator M., Nieniewski M. Detection of cancerous masses in mammograms by template matching. optimization of template brightness distribution by means of evolutionary algorithm. J. Digit. Imaging 2012, 25:162-172.
    • (2012) J. Digit. Imaging , vol.25 , pp. 162-172
    • Bator, M.1    Nieniewski, M.2
  • 5
    • 0028857937 scopus 로고
    • Analysis of spiculation in the computerized classification of mammographic masses
    • Huo Z., Giger M., Vyborny C., Bick U., Lu P., Wolverton D., Schmidt R. Analysis of spiculation in the computerized classification of mammographic masses. Med. Phys. 1995, 2:1569-1579.
    • (1995) Med. Phys. , vol.2 , pp. 1569-1579
    • Huo, Z.1    Giger, M.2    Vyborny, C.3    Bick, U.4    Lu, P.5    Wolverton, D.6    Schmidt, R.7
  • 7
    • 2442666562 scopus 로고    scopus 로고
    • A new 2d segmentation method based on dynamic programming applied to computer aided detection in mammography
    • Timp S., Karssemeijer N. A new 2d segmentation method based on dynamic programming applied to computer aided detection in mammography. Med. Phys. 2004, 31:958-971.
    • (2004) Med. Phys. , vol.31 , pp. 958-971
    • Timp, S.1    Karssemeijer, N.2
  • 8
    • 45149087017 scopus 로고    scopus 로고
    • Detection of breast cancer tumor based on morphological watershed algorithm
    • Sheshadri H., Kandaswamy A. Detection of breast cancer tumor based on morphological watershed algorithm. ICGST-GVIP J. 2005, 5:17-21.
    • (2005) ICGST-GVIP J. , vol.5 , pp. 17-21
    • Sheshadri, H.1    Kandaswamy, A.2
  • 9
    • 41649084517 scopus 로고    scopus 로고
    • Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection
    • Rojas Domínguez A., Nandi A. Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection. Comput. Med. Imaging Graph. 2008, 32:304-315.
    • (2008) Comput. Med. Imaging Graph. , vol.32 , pp. 304-315
    • Rojas Domínguez, A.1    Nandi, A.2
  • 10
    • 33744507889 scopus 로고    scopus 로고
    • A hybrid system for detecting masses in mammographic images
    • Székely N., Tóth N., Pataki B. A hybrid system for detecting masses in mammographic images. IEEE Trans. Instrum. Meas. 2006, 55:944-952.
    • (2006) IEEE Trans. Instrum. Meas. , vol.55 , pp. 944-952
    • Székely, N.1    Tóth, N.2    Pataki, B.3
  • 11
    • 0035384865 scopus 로고    scopus 로고
    • An artificial intelligent algorithm for tumor detection in screening mammogram
    • Zhen L., Chan A. An artificial intelligent algorithm for tumor detection in screening mammogram. IEEE Trans. Med. Imaging 2001, 20:559-567.
    • (2001) IEEE Trans. Med. Imaging , vol.20 , pp. 559-567
    • Zhen, L.1    Chan, A.2
  • 12
    • 34249737053 scopus 로고    scopus 로고
    • A concentric morphology model for the detection of masses in mammography
    • Eltonsy N., Tourassi G., Elmaghraby A. A concentric morphology model for the detection of masses in mammography. IEEE Trans. Med. Imaging 2007, 26:880-889.
    • (2007) IEEE Trans. Med. Imaging , vol.26 , pp. 880-889
    • Eltonsy, N.1    Tourassi, G.2    Elmaghraby, A.3
  • 13
    • 79952757441 scopus 로고    scopus 로고
    • Automatic detection of breast cancers in mammograms using structured support vector machines
    • Wang D., Shi L., Ann Heng P. Automatic detection of breast cancers in mammograms using structured support vector machines. Neurocomputing 2009, 72:3296-3302.
    • (2009) Neurocomputing , vol.72 , pp. 3296-3302
    • Wang, D.1    Shi, L.2    Ann Heng, P.3
  • 14
    • 80955158411 scopus 로고    scopus 로고
    • Wavelet packet energy, tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions
    • Ramirez-Villegas J.F., Ramirez-Moreno D.F. Wavelet packet energy, tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions. Neurocomputing 2012, 77:82-100.
    • (2012) Neurocomputing , vol.77 , pp. 82-100
    • Ramirez-Villegas, J.F.1    Ramirez-Moreno, D.F.2
  • 15
    • 84893703234 scopus 로고    scopus 로고
    • Breast tumor detection in digital mammography based on extreme learning machine
    • Wang Z., Yu G., Kang Y., Zhao Y., Qu Q. Breast tumor detection in digital mammography based on extreme learning machine. Neurocomputing 2014, 175-184.
    • (2014) Neurocomputing , pp. 175-184
    • Wang, Z.1    Yu, G.2    Kang, Y.3    Zhao, Y.4    Qu, Q.5
  • 17
    • 0035113709 scopus 로고    scopus 로고
    • Segmentation of suspicious densities in digital mammograms
    • Te Brake G., Karssemeijer N. Segmentation of suspicious densities in digital mammograms. Med. Phys. 2001, 28:259-266.
    • (2001) Med. Phys. , vol.28 , pp. 259-266
    • Te Brake, G.1    Karssemeijer, N.2
  • 18
    • 0035544613 scopus 로고    scopus 로고
    • Computer-aided characterization of mammographic masses. accuracy of mass segmentation and its effects on characterization
    • Sahiner B., Petrick N., Chan H., Hadjiiski L., Paramagul C., Helvie M., Gurcan M. Computer-aided characterization of mammographic masses. accuracy of mass segmentation and its effects on characterization. IEEE Trans. Med. Imaging 2001, 20:1275-1284.
    • (2001) IEEE Trans. Med. Imaging , vol.20 , pp. 1275-1284
    • Sahiner, B.1    Petrick, N.2    Chan, H.3    Hadjiiski, L.4    Paramagul, C.5    Helvie, M.6    Gurcan, M.7
  • 19
    • 35648984504 scopus 로고    scopus 로고
    • A dual-stage method for lesion segmentation on digital mammograms
    • Yuan Y., Giger M., Li H., Suzuki K., Sennett C. A dual-stage method for lesion segmentation on digital mammograms. Med. Phys. 2007, 34:4180-4193.
    • (2007) Med. Phys. , vol.34 , pp. 4180-4193
    • Yuan, Y.1    Giger, M.2    Li, H.3    Suzuki, K.4    Sennett, C.5
  • 22
    • 52649131914 scopus 로고    scopus 로고
    • Minimization of region-scalable fitting energy for image segmentation
    • Li C., Kao C., Gore J., Ding Z. Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 2008, 17:1940-1949.
    • (2008) IEEE Trans. Image Process. , vol.17 , pp. 1940-1949
    • Li, C.1    Kao, C.2    Gore, J.3    Ding, Z.4
  • 23
    • 67650161474 scopus 로고    scopus 로고
    • Narrow band region-based active contours and surfaces for 2d and 3d segmentation
    • Mille J. Narrow band region-based active contours and surfaces for 2d and 3d segmentation. Comput. Vis. Image Underst. 2009, 113:946-965.
    • (2009) Comput. Vis. Image Underst. , vol.113 , pp. 946-965
    • Mille, J.1
  • 24
    • 77952607168 scopus 로고    scopus 로고
    • A completed modeling of local binary pattern operator for texture classification
    • Guo Z., Zhang L., Zhang D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 2010, 19:1657-1663.
    • (2010) IEEE Trans. Image Process. , vol.19 , pp. 1657-1663
    • Guo, Z.1    Zhang, L.2    Zhang, D.3
  • 25
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9:62-66.
    • (1979) IEEE Trans. Syst. Man Cybern. , vol.9 , pp. 62-66
    • Otsu, N.1
  • 26
    • 0032129152 scopus 로고    scopus 로고
    • Automated seeded lesion segmentation on digital mammograms
    • Kupinski M., Giger M. Automated seeded lesion segmentation on digital mammograms. IEEE Trans. Med. Imaging 1998, 17:510-517.
    • (1998) IEEE Trans. Med. Imaging , vol.17 , pp. 510-517
    • Kupinski, M.1    Giger, M.2
  • 27
    • 7244232650 scopus 로고    scopus 로고
    • Steepest changes of a probability-based cost function for delineation of mammographic masses. a validation study
    • Kinnard L., Lo S., Makariou E., Osicka T., Wang P., Chouikha M., Freedman M. Steepest changes of a probability-based cost function for delineation of mammographic masses. a validation study. Med. Phys. 2004, 31:2796-2810.
    • (2004) Med. Phys. , vol.31 , pp. 2796-2810
    • Kinnard, L.1    Lo, S.2    Makariou, E.3    Osicka, T.4    Wang, P.5    Chouikha, M.6    Freedman, M.7
  • 28
    • 24644441054 scopus 로고    scopus 로고
    • Level set evolution without re-initialization: a new variational formulation
    • IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    • C. Li, C. Xu, C. Gui, M. Fox, Level set evolution without re-initialization: a new variational formulation, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 430-436.
    • Li, C.1    Xu, C.2    Gui, C.3    Fox, M.4
  • 30
    • 84907600379 scopus 로고    scopus 로고
    • Mass classification in mammograms using selected geometry and texture features, and a new svm-based feature selection method
    • Liu X., Tang J. Mass classification in mammograms using selected geometry and texture features, and a new svm-based feature selection method. IEEE Syst. J. 2014, 8:910-920.
    • (2014) IEEE Syst. J. , vol.8 , pp. 910-920
    • Liu, X.1    Tang, J.2
  • 31
    • 84855776735 scopus 로고    scopus 로고
    • Classification of breast mass in mammography with an improved level set segmentation by combining morphological features and texture features
    • Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, Springer
    • J. Tang, X. Liu, Classification of breast mass in mammography with an improved level set segmentation by combining morphological features and texture features, in: Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, Springer, 2011, pp. 119-135.
    • (2011) , pp. 119-135
    • Tang, J.1    Liu, X.2
  • 32
    • 78649269028 scopus 로고    scopus 로고
    • Distance regularized level set evolution and its application to image segmentation
    • Li C., Xu C., Gui C., Fox M. Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 2010, 19:3243-3254.
    • (2010) IEEE Trans. Image Process. , vol.19 , pp. 3243-3254
    • Li, C.1    Xu, C.2    Gui, C.3    Fox, M.4
  • 33
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Ojala T., Pietikäinen M., Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 23:971-987.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , pp. 971-987
    • Ojala, T.1    Pietikäinen, M.2    Mäenpää, T.3
  • 36
    • 33144466752 scopus 로고    scopus 로고
    • A texture-based method for modeling the background and detecting moving objects
    • Heikkila M., Pietikainen M. A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28:657-662.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , pp. 657-662
    • Heikkila, M.1    Pietikainen, M.2
  • 37
    • 84883840795 scopus 로고    scopus 로고
    • False positive reduction in mammographic mass detection using local binary patterns
    • Medical Image Computing and Computer-Assisted Intervention, Springer
    • A. Oliver, X. Lladó, J. Freixenet, J. Martí, False positive reduction in mammographic mass detection using local binary patterns, in: Medical Image Computing and Computer-Assisted Intervention, Springer, 2007, pp. 286-293.
    • (2007) , pp. 286-293
    • Oliver, A.1    Lladó, X.2    Freixenet, J.3    Martí, J.4
  • 39
    • 0034287385 scopus 로고    scopus 로고
    • Gradient and texture analysis for the classification of mammographic masses
    • Mudigonda N., Rangayyan R., Desautels J. Gradient and texture analysis for the classification of mammographic masses. IEEE Trans. Med. Imaging 2000, 19:1032-1043.
    • (2000) IEEE Trans. Med. Imaging , vol.19 , pp. 1032-1043
    • Mudigonda, N.1    Rangayyan, R.2    Desautels, J.3
  • 40
    • 37349052834 scopus 로고    scopus 로고
    • Polygonal modeling of contours of breast tumors with the preservation of spicules
    • Guliato D., Rangayyan R., Carvalho J., Santiago S. Polygonal modeling of contours of breast tumors with the preservation of spicules. IEEE Trans. Biomed. Eng. 2008, 55:14-20.
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , pp. 14-20
    • Guliato, D.1    Rangayyan, R.2    Carvalho, J.3    Santiago, S.4
  • 41
    • 0027850153 scopus 로고
    • Classifying mammographic lesions using computerized image analysis
    • Kilday J., Palmieri F., Fox M. Classifying mammographic lesions using computerized image analysis. IEEE Trans. Med. Imaging 1993, 12:664-669.
    • (1993) IEEE Trans. Med. Imaging , vol.12 , pp. 664-669
    • Kilday, J.1    Palmieri, F.2    Fox, M.3
  • 44
    • 0002734346 scopus 로고    scopus 로고
    • The digital database for screening mammography
    • M.J. Yaffe (Ed.), Proceedings of the Fifth International Workshop on Digital Mammography
    • M. Heath, K. Bowyer, D. Kopans, R. Moore, P. Kegelmeyer, The digital database for screening mammography, in: M.J. Yaffe (Ed.), Proceedings of the Fifth International Workshop on Digital Mammography, 212-218.
    • Heath, M.1    Bowyer, K.2    Kopans, D.3    Moore, R.4    Kegelmeyer, P.5
  • 45
    • 27244440347 scopus 로고    scopus 로고
    • Applying support vector machines to imbalanced datasets
    • Akbani R., Kwek S., Japkowicz N. Applying support vector machines to imbalanced datasets. Mach. Learn. ECML 2004, 2004:39-50.
    • (2004) Mach. Learn. ECML , vol.2004 , pp. 39-50
    • Akbani, R.1    Kwek, S.2    Japkowicz, N.3
  • 47
  • 49
    • 34247586627 scopus 로고    scopus 로고
    • Two graph theory based methods for identifying the pectoral muscle in mammograms
    • Ma F., Bajger M., Slavotinek J.P., Bottema M.J. Two graph theory based methods for identifying the pectoral muscle in mammograms. Pattern Recognit. 2007, 40:2592-2602.
    • (2007) Pattern Recognit. , vol.40 , pp. 2592-2602
    • Ma, F.1    Bajger, M.2    Slavotinek, J.P.3    Bottema, M.J.4
  • 50
    • 0025269074 scopus 로고
    • Free-response methodology. alternate analysis and a new observer-performance experiment
    • Chakraborty D., Winter L. Free-response methodology. alternate analysis and a new observer-performance experiment. Radiology 1990, 174:873-881.
    • (1990) Radiology , vol.174 , pp. 873-881
    • Chakraborty, D.1    Winter, L.2
  • 51
    • 0031283415 scopus 로고    scopus 로고
    • Computer-aided breast cancer detection and diagnosis of masses using difference of gaussians and derivative-based feature saliency
    • Polakowski W., Cournoyer D., Rogers S., DeSimio M., Ruck D., Hoffmeister J., Raines R. Computer-aided breast cancer detection and diagnosis of masses using difference of gaussians and derivative-based feature saliency. IEEE Trans. Med. Imaging 1997, 16:811-819.
    • (1997) IEEE Trans. Med. Imaging , vol.16 , pp. 811-819
    • Polakowski, W.1    Cournoyer, D.2    Rogers, S.3    DeSimio, M.4    Ruck, D.5    Hoffmeister, J.6    Raines, R.7
  • 52
    • 33751006137 scopus 로고    scopus 로고
    • Automated detection of masses in mammograms by local adaptive thresholding
    • Kom G., Tiedeu A., Kom M. Automated detection of masses in mammograms by local adaptive thresholding. Comput. Biol. Med. 2007, 37:37-48.
    • (2007) Comput. Biol. Med. , vol.37 , pp. 37-48
    • Kom, G.1    Tiedeu, A.2    Kom, M.3
  • 53
    • 0033153747 scopus 로고    scopus 로고
    • Single and multiscale detection of masses in digital mammograms
    • Te Brake G., Karssemeijer N. Single and multiscale detection of masses in digital mammograms. IEEE Trans. Med. Imaging 1999, 18:628-639.
    • (1999) IEEE Trans. Med. Imaging , vol.18 , pp. 628-639
    • Te Brake, G.1    Karssemeijer, N.2
  • 54
    • 0024944225 scopus 로고
    • On techniques for detecting circumscribed masses in mammograms
    • Lai S.-M., Li X., Biscof W. On techniques for detecting circumscribed masses in mammograms. IEEE Trans. Med. Imaging 1989, 8:377-386.
    • (1989) IEEE Trans. Med. Imaging , vol.8 , pp. 377-386
    • Lai, S.-M.1    Li, X.2    Biscof, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.