-
1
-
-
67650385302
-
Breast Cancer Facts & Figures 2013-2014
-
Technical Report, American Cancer Society, Inc., Atlanta
-
A.C. Society, Breast Cancer Facts & Figures 2013-2014, Technical Report, American Cancer Society, Inc., Atlanta, 2013.
-
(2013)
-
-
Society, A.C.1
-
2
-
-
63349107095
-
Computer-aided detection and diagnosis of breast cancer with mammography. recent advances
-
Tang J., Rangayyan R., Xu J., Naqa I., Yang Y. Computer-aided detection and diagnosis of breast cancer with mammography. recent advances. IEEE Trans. Inf. Technol. Biomed. 2009, 13:236-251.
-
(2009)
IEEE Trans. Inf. Technol. Biomed.
, vol.13
, pp. 236-251
-
-
Tang, J.1
Rangayyan, R.2
Xu, J.3
Naqa, I.4
Yang, Y.5
-
3
-
-
75749149659
-
A review of automatic mass detection and segmentation in mammographic images
-
Oliver A., Freixenet J., Martí J., Pérez E., Pont J., Denton E., Zwiggelaar R. A review of automatic mass detection and segmentation in mammographic images. Med. Image Anal. 2010, 14:87-110.
-
(2010)
Med. Image Anal.
, vol.14
, pp. 87-110
-
-
Oliver, A.1
Freixenet, J.2
Martí, J.3
Pérez, E.4
Pont, J.5
Denton, E.6
Zwiggelaar, R.7
-
4
-
-
84861320259
-
Detection of cancerous masses in mammograms by template matching. optimization of template brightness distribution by means of evolutionary algorithm
-
Bator M., Nieniewski M. Detection of cancerous masses in mammograms by template matching. optimization of template brightness distribution by means of evolutionary algorithm. J. Digit. Imaging 2012, 25:162-172.
-
(2012)
J. Digit. Imaging
, vol.25
, pp. 162-172
-
-
Bator, M.1
Nieniewski, M.2
-
5
-
-
0028857937
-
Analysis of spiculation in the computerized classification of mammographic masses
-
Huo Z., Giger M., Vyborny C., Bick U., Lu P., Wolverton D., Schmidt R. Analysis of spiculation in the computerized classification of mammographic masses. Med. Phys. 1995, 2:1569-1579.
-
(1995)
Med. Phys.
, vol.2
, pp. 1569-1579
-
-
Huo, Z.1
Giger, M.2
Vyborny, C.3
Bick, U.4
Lu, P.5
Wolverton, D.6
Schmidt, R.7
-
6
-
-
0029376019
-
Markov random field for tumor detection in digital mammography
-
Li H., Kallergi M., Clarke L., Jain V., Clark R. Markov random field for tumor detection in digital mammography. IEEE Trans. Med. Imaging 1995, 14:565-576.
-
(1995)
IEEE Trans. Med. Imaging
, vol.14
, pp. 565-576
-
-
Li, H.1
Kallergi, M.2
Clarke, L.3
Jain, V.4
Clark, R.5
-
7
-
-
2442666562
-
A new 2d segmentation method based on dynamic programming applied to computer aided detection in mammography
-
Timp S., Karssemeijer N. A new 2d segmentation method based on dynamic programming applied to computer aided detection in mammography. Med. Phys. 2004, 31:958-971.
-
(2004)
Med. Phys.
, vol.31
, pp. 958-971
-
-
Timp, S.1
Karssemeijer, N.2
-
8
-
-
45149087017
-
Detection of breast cancer tumor based on morphological watershed algorithm
-
Sheshadri H., Kandaswamy A. Detection of breast cancer tumor based on morphological watershed algorithm. ICGST-GVIP J. 2005, 5:17-21.
-
(2005)
ICGST-GVIP J.
, vol.5
, pp. 17-21
-
-
Sheshadri, H.1
Kandaswamy, A.2
-
9
-
-
41649084517
-
Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection
-
Rojas Domínguez A., Nandi A. Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection. Comput. Med. Imaging Graph. 2008, 32:304-315.
-
(2008)
Comput. Med. Imaging Graph.
, vol.32
, pp. 304-315
-
-
Rojas Domínguez, A.1
Nandi, A.2
-
10
-
-
33744507889
-
A hybrid system for detecting masses in mammographic images
-
Székely N., Tóth N., Pataki B. A hybrid system for detecting masses in mammographic images. IEEE Trans. Instrum. Meas. 2006, 55:944-952.
-
(2006)
IEEE Trans. Instrum. Meas.
, vol.55
, pp. 944-952
-
-
Székely, N.1
Tóth, N.2
Pataki, B.3
-
11
-
-
0035384865
-
An artificial intelligent algorithm for tumor detection in screening mammogram
-
Zhen L., Chan A. An artificial intelligent algorithm for tumor detection in screening mammogram. IEEE Trans. Med. Imaging 2001, 20:559-567.
-
(2001)
IEEE Trans. Med. Imaging
, vol.20
, pp. 559-567
-
-
Zhen, L.1
Chan, A.2
-
12
-
-
34249737053
-
A concentric morphology model for the detection of masses in mammography
-
Eltonsy N., Tourassi G., Elmaghraby A. A concentric morphology model for the detection of masses in mammography. IEEE Trans. Med. Imaging 2007, 26:880-889.
-
(2007)
IEEE Trans. Med. Imaging
, vol.26
, pp. 880-889
-
-
Eltonsy, N.1
Tourassi, G.2
Elmaghraby, A.3
-
13
-
-
79952757441
-
Automatic detection of breast cancers in mammograms using structured support vector machines
-
Wang D., Shi L., Ann Heng P. Automatic detection of breast cancers in mammograms using structured support vector machines. Neurocomputing 2009, 72:3296-3302.
-
(2009)
Neurocomputing
, vol.72
, pp. 3296-3302
-
-
Wang, D.1
Shi, L.2
Ann Heng, P.3
-
14
-
-
80955158411
-
Wavelet packet energy, tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions
-
Ramirez-Villegas J.F., Ramirez-Moreno D.F. Wavelet packet energy, tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions. Neurocomputing 2012, 77:82-100.
-
(2012)
Neurocomputing
, vol.77
, pp. 82-100
-
-
Ramirez-Villegas, J.F.1
Ramirez-Moreno, D.F.2
-
15
-
-
84893703234
-
Breast tumor detection in digital mammography based on extreme learning machine
-
Wang Z., Yu G., Kang Y., Zhao Y., Qu Q. Breast tumor detection in digital mammography based on extreme learning machine. Neurocomputing 2014, 175-184.
-
(2014)
Neurocomputing
, pp. 175-184
-
-
Wang, Z.1
Yu, G.2
Kang, Y.3
Zhao, Y.4
Qu, Q.5
-
17
-
-
0035113709
-
Segmentation of suspicious densities in digital mammograms
-
Te Brake G., Karssemeijer N. Segmentation of suspicious densities in digital mammograms. Med. Phys. 2001, 28:259-266.
-
(2001)
Med. Phys.
, vol.28
, pp. 259-266
-
-
Te Brake, G.1
Karssemeijer, N.2
-
18
-
-
0035544613
-
Computer-aided characterization of mammographic masses. accuracy of mass segmentation and its effects on characterization
-
Sahiner B., Petrick N., Chan H., Hadjiiski L., Paramagul C., Helvie M., Gurcan M. Computer-aided characterization of mammographic masses. accuracy of mass segmentation and its effects on characterization. IEEE Trans. Med. Imaging 2001, 20:1275-1284.
-
(2001)
IEEE Trans. Med. Imaging
, vol.20
, pp. 1275-1284
-
-
Sahiner, B.1
Petrick, N.2
Chan, H.3
Hadjiiski, L.4
Paramagul, C.5
Helvie, M.6
Gurcan, M.7
-
19
-
-
35648984504
-
A dual-stage method for lesion segmentation on digital mammograms
-
Yuan Y., Giger M., Li H., Suzuki K., Sennett C. A dual-stage method for lesion segmentation on digital mammograms. Med. Phys. 2007, 34:4180-4193.
-
(2007)
Med. Phys.
, vol.34
, pp. 4180-4193
-
-
Yuan, Y.1
Giger, M.2
Li, H.3
Suzuki, K.4
Sennett, C.5
-
22
-
-
52649131914
-
Minimization of region-scalable fitting energy for image segmentation
-
Li C., Kao C., Gore J., Ding Z. Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 2008, 17:1940-1949.
-
(2008)
IEEE Trans. Image Process.
, vol.17
, pp. 1940-1949
-
-
Li, C.1
Kao, C.2
Gore, J.3
Ding, Z.4
-
23
-
-
67650161474
-
Narrow band region-based active contours and surfaces for 2d and 3d segmentation
-
Mille J. Narrow band region-based active contours and surfaces for 2d and 3d segmentation. Comput. Vis. Image Underst. 2009, 113:946-965.
-
(2009)
Comput. Vis. Image Underst.
, vol.113
, pp. 946-965
-
-
Mille, J.1
-
24
-
-
77952607168
-
A completed modeling of local binary pattern operator for texture classification
-
Guo Z., Zhang L., Zhang D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 2010, 19:1657-1663.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, pp. 1657-1663
-
-
Guo, Z.1
Zhang, L.2
Zhang, D.3
-
25
-
-
0018306059
-
A threshold selection method from gray-level histograms
-
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9:62-66.
-
(1979)
IEEE Trans. Syst. Man Cybern.
, vol.9
, pp. 62-66
-
-
Otsu, N.1
-
26
-
-
0032129152
-
Automated seeded lesion segmentation on digital mammograms
-
Kupinski M., Giger M. Automated seeded lesion segmentation on digital mammograms. IEEE Trans. Med. Imaging 1998, 17:510-517.
-
(1998)
IEEE Trans. Med. Imaging
, vol.17
, pp. 510-517
-
-
Kupinski, M.1
Giger, M.2
-
27
-
-
7244232650
-
Steepest changes of a probability-based cost function for delineation of mammographic masses. a validation study
-
Kinnard L., Lo S., Makariou E., Osicka T., Wang P., Chouikha M., Freedman M. Steepest changes of a probability-based cost function for delineation of mammographic masses. a validation study. Med. Phys. 2004, 31:2796-2810.
-
(2004)
Med. Phys.
, vol.31
, pp. 2796-2810
-
-
Kinnard, L.1
Lo, S.2
Makariou, E.3
Osicka, T.4
Wang, P.5
Chouikha, M.6
Freedman, M.7
-
28
-
-
24644441054
-
Level set evolution without re-initialization: a new variational formulation
-
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
-
C. Li, C. Xu, C. Gui, M. Fox, Level set evolution without re-initialization: a new variational formulation, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 430-436.
-
-
-
Li, C.1
Xu, C.2
Gui, C.3
Fox, M.4
-
29
-
-
0036892488
-
Using prior shapes in geometric active contours in a variational framework
-
Chen Y., Tagare H., Thiruvenkadam S., Huang F., Wilson D., Gopinath K., Briggs R., Geiser E. Using prior shapes in geometric active contours in a variational framework. Int. J. Comput. Vis. 2002, 50:315-328.
-
(2002)
Int. J. Comput. Vis.
, vol.50
, pp. 315-328
-
-
Chen, Y.1
Tagare, H.2
Thiruvenkadam, S.3
Huang, F.4
Wilson, D.5
Gopinath, K.6
Briggs, R.7
Geiser, E.8
-
30
-
-
84907600379
-
Mass classification in mammograms using selected geometry and texture features, and a new svm-based feature selection method
-
Liu X., Tang J. Mass classification in mammograms using selected geometry and texture features, and a new svm-based feature selection method. IEEE Syst. J. 2014, 8:910-920.
-
(2014)
IEEE Syst. J.
, vol.8
, pp. 910-920
-
-
Liu, X.1
Tang, J.2
-
31
-
-
84855776735
-
Classification of breast mass in mammography with an improved level set segmentation by combining morphological features and texture features
-
Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, Springer
-
J. Tang, X. Liu, Classification of breast mass in mammography with an improved level set segmentation by combining morphological features and texture features, in: Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, Springer, 2011, pp. 119-135.
-
(2011)
, pp. 119-135
-
-
Tang, J.1
Liu, X.2
-
32
-
-
78649269028
-
Distance regularized level set evolution and its application to image segmentation
-
Li C., Xu C., Gui C., Fox M. Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 2010, 19:3243-3254.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, pp. 3243-3254
-
-
Li, C.1
Xu, C.2
Gui, C.3
Fox, M.4
-
33
-
-
0036647193
-
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
-
Ojala T., Pietikäinen M., Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 23:971-987.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.23
, pp. 971-987
-
-
Ojala, T.1
Pietikäinen, M.2
Mäenpää, T.3
-
36
-
-
33144466752
-
A texture-based method for modeling the background and detecting moving objects
-
Heikkila M., Pietikainen M. A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28:657-662.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, pp. 657-662
-
-
Heikkila, M.1
Pietikainen, M.2
-
37
-
-
84883840795
-
False positive reduction in mammographic mass detection using local binary patterns
-
Medical Image Computing and Computer-Assisted Intervention, Springer
-
A. Oliver, X. Lladó, J. Freixenet, J. Martí, False positive reduction in mammographic mass detection using local binary patterns, in: Medical Image Computing and Computer-Assisted Intervention, Springer, 2007, pp. 286-293.
-
(2007)
, pp. 286-293
-
-
Oliver, A.1
Lladó, X.2
Freixenet, J.3
Martí, J.4
-
38
-
-
67349257490
-
A textural approach for mass false positive reduction in mammography
-
Lladó X., Oliver A., Freixenet J., Martí R., Martí J. A textural approach for mass false positive reduction in mammography. Comput. Med. Imaging Graph. 2009, 33:415-422.
-
(2009)
Comput. Med. Imaging Graph.
, vol.33
, pp. 415-422
-
-
Lladó, X.1
Oliver, A.2
Freixenet, J.3
Martí, R.4
Martí, J.5
-
39
-
-
0034287385
-
Gradient and texture analysis for the classification of mammographic masses
-
Mudigonda N., Rangayyan R., Desautels J. Gradient and texture analysis for the classification of mammographic masses. IEEE Trans. Med. Imaging 2000, 19:1032-1043.
-
(2000)
IEEE Trans. Med. Imaging
, vol.19
, pp. 1032-1043
-
-
Mudigonda, N.1
Rangayyan, R.2
Desautels, J.3
-
40
-
-
37349052834
-
Polygonal modeling of contours of breast tumors with the preservation of spicules
-
Guliato D., Rangayyan R., Carvalho J., Santiago S. Polygonal modeling of contours of breast tumors with the preservation of spicules. IEEE Trans. Biomed. Eng. 2008, 55:14-20.
-
(2008)
IEEE Trans. Biomed. Eng.
, vol.55
, pp. 14-20
-
-
Guliato, D.1
Rangayyan, R.2
Carvalho, J.3
Santiago, S.4
-
41
-
-
0027850153
-
Classifying mammographic lesions using computerized image analysis
-
Kilday J., Palmieri F., Fox M. Classifying mammographic lesions using computerized image analysis. IEEE Trans. Med. Imaging 1993, 12:664-669.
-
(1993)
IEEE Trans. Med. Imaging
, vol.12
, pp. 664-669
-
-
Kilday, J.1
Palmieri, F.2
Fox, M.3
-
44
-
-
0002734346
-
The digital database for screening mammography
-
M.J. Yaffe (Ed.), Proceedings of the Fifth International Workshop on Digital Mammography
-
M. Heath, K. Bowyer, D. Kopans, R. Moore, P. Kegelmeyer, The digital database for screening mammography, in: M.J. Yaffe (Ed.), Proceedings of the Fifth International Workshop on Digital Mammography, 212-218.
-
-
-
Heath, M.1
Bowyer, K.2
Kopans, D.3
Moore, R.4
Kegelmeyer, P.5
-
45
-
-
27244440347
-
Applying support vector machines to imbalanced datasets
-
Akbani R., Kwek S., Japkowicz N. Applying support vector machines to imbalanced datasets. Mach. Learn. ECML 2004, 2004:39-50.
-
(2004)
Mach. Learn. ECML
, vol.2004
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
46
-
-
0346586663
-
Smote: synthetic minority over-sampling technique
-
Chawla N., Bowyer K., Hall L., Kegelmeyer W. Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16:321-357.
-
(2002)
J. Artif. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.1
Bowyer, K.2
Hall, L.3
Kegelmeyer, W.4
-
48
-
-
1342303477
-
Automatic identification of the pectoral muscle in mammograms
-
Ferrari R.J., Rangayyan R.M., Desautels J.L., Borges R., Frere A.F. Automatic identification of the pectoral muscle in mammograms. IEEE Trans. Med. Imaging 2004, 23:232-245.
-
(2004)
IEEE Trans. Med. Imaging
, vol.23
, pp. 232-245
-
-
Ferrari, R.J.1
Rangayyan, R.M.2
Desautels, J.L.3
Borges, R.4
Frere, A.F.5
-
49
-
-
34247586627
-
Two graph theory based methods for identifying the pectoral muscle in mammograms
-
Ma F., Bajger M., Slavotinek J.P., Bottema M.J. Two graph theory based methods for identifying the pectoral muscle in mammograms. Pattern Recognit. 2007, 40:2592-2602.
-
(2007)
Pattern Recognit.
, vol.40
, pp. 2592-2602
-
-
Ma, F.1
Bajger, M.2
Slavotinek, J.P.3
Bottema, M.J.4
-
50
-
-
0025269074
-
Free-response methodology. alternate analysis and a new observer-performance experiment
-
Chakraborty D., Winter L. Free-response methodology. alternate analysis and a new observer-performance experiment. Radiology 1990, 174:873-881.
-
(1990)
Radiology
, vol.174
, pp. 873-881
-
-
Chakraborty, D.1
Winter, L.2
-
51
-
-
0031283415
-
Computer-aided breast cancer detection and diagnosis of masses using difference of gaussians and derivative-based feature saliency
-
Polakowski W., Cournoyer D., Rogers S., DeSimio M., Ruck D., Hoffmeister J., Raines R. Computer-aided breast cancer detection and diagnosis of masses using difference of gaussians and derivative-based feature saliency. IEEE Trans. Med. Imaging 1997, 16:811-819.
-
(1997)
IEEE Trans. Med. Imaging
, vol.16
, pp. 811-819
-
-
Polakowski, W.1
Cournoyer, D.2
Rogers, S.3
DeSimio, M.4
Ruck, D.5
Hoffmeister, J.6
Raines, R.7
-
52
-
-
33751006137
-
Automated detection of masses in mammograms by local adaptive thresholding
-
Kom G., Tiedeu A., Kom M. Automated detection of masses in mammograms by local adaptive thresholding. Comput. Biol. Med. 2007, 37:37-48.
-
(2007)
Comput. Biol. Med.
, vol.37
, pp. 37-48
-
-
Kom, G.1
Tiedeu, A.2
Kom, M.3
-
53
-
-
0033153747
-
Single and multiscale detection of masses in digital mammograms
-
Te Brake G., Karssemeijer N. Single and multiscale detection of masses in digital mammograms. IEEE Trans. Med. Imaging 1999, 18:628-639.
-
(1999)
IEEE Trans. Med. Imaging
, vol.18
, pp. 628-639
-
-
Te Brake, G.1
Karssemeijer, N.2
-
54
-
-
0024944225
-
On techniques for detecting circumscribed masses in mammograms
-
Lai S.-M., Li X., Biscof W. On techniques for detecting circumscribed masses in mammograms. IEEE Trans. Med. Imaging 1989, 8:377-386.
-
(1989)
IEEE Trans. Med. Imaging
, vol.8
, pp. 377-386
-
-
Lai, S.-M.1
Li, X.2
Biscof, W.3
-
55
-
-
84855259290
-
Inbreast. toward a full-field digital mammographic database
-
Moreira I.C., Amaral I., Domingues I., Cardoso A., Cardoso M.J., Cardoso J.S. Inbreast. toward a full-field digital mammographic database. Acad. Radiol. 2012, 19:236-248.
-
(2012)
Acad. Radiol.
, vol.19
, pp. 236-248
-
-
Moreira, I.C.1
Amaral, I.2
Domingues, I.3
Cardoso, A.4
Cardoso, M.J.5
Cardoso, J.S.6
|