메뉴 건너뛰기




Volumn , Issue , 2012, Pages 265-275

Prognostics and health monitoring in the presence of heterogeneous information

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; LEARNING ALGORITHMS; LEARNING SYSTEMS; STATE ESTIMATION; SYSTEMS ENGINEERING; UNCERTAINTY ANALYSIS;

EID: 84920513960     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (21)
  • 1
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • Arulampalam, M. S., Maskell, S., & Gordon, N. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 50, 174-188.
    • (2002) IEEE TRANSACTIONS on SIGNAL PROCESSING , vol.50 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3
  • 2
    • 0002436850 scopus 로고    scopus 로고
    • Tractable inference for complex stochastic processes
    • UAI'98. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from
    • Boyen, X., & Koller, D. (1998). Tractable inference for complex stochastic processes. Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, UAI'98 (pp. 33-42). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from http://dl.acm.org/citation.cfm?id=2074094.2074099
    • (1998) Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence , pp. 33-42
    • Boyen, X.1    Koller, D.2
  • 3
    • 33750110031 scopus 로고    scopus 로고
    • Dynamic Bayesian networks for machine diagnostics: Hierarchical hidden Markov models vs. Competitive learning
    • Presented at the 2005 IEEE International Joint Conference on Neural Networks 2005. IJCNN '05. Proceedings, IEEE
    • Camci, F., & Chinnam, R. B. (2005). Dynamic Bayesian networks for machine diagnostics: hierarchical hidden Markov models vs. competitive learning. 2005 IEEE International Joint Conference on Neural Networks, 2005. IJCNN '05. Proceedings (Vol. 3, pp. 1752- 1757 vol. 3). Presented at the 2005 IEEE International Joint Conference on Neural Networks, 2005. IJCNN '05. Proceedings, IEEE. doi:10.1109/IJCNN.2005.1556145
    • (2005) 2005 IEEE International Joint Conference on Neural Networks, 2005. IJCNN '05. Proceedings , vol.3 , pp. 1752-1757
    • Camci, F.1    Chinnam, R.B.2
  • 4
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4), 309-347. doi:10.1007/BF00994110
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 5
    • 33750071718 scopus 로고    scopus 로고
    • A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests
    • de Campos, L. M. (2006). A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests. J. Mach. Learn. Res., 7, 2149-2187.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2149-2187
    • De Campos, L.M.1
  • 9
    • 76649121202 scopus 로고    scopus 로고
    • Localizing transient faults using dynamic bayesian networks
    • Presented at the High Level Design Validation and Test Workshop 2009. HLDVT 2009. IEEE International, IEEE
    • Jha, S., Wenchao Li, & Seshia, S. A. (2009). Localizing transient faults using dynamic bayesian networks. High Level Design Validation and Test Workshop, 2009. HLDVT 2009. IEEE International (pp. 82-87). Presented at the High Level Design Validation and Test Workshop, 2009. HLDVT 2009. IEEE International, IEEE. doi:10.1109/HLDVT.2009.5340170
    • (2009) High Level Design Validation and Test Workshop, 2009. HLDVT 2009.IEEE International , pp. 82-87
    • Jha, S.1    Li, W.2    Seshia, S.A.3
  • 10
    • 84950442428 scopus 로고
    • Propagation of probabilities, means, and variances in mixed graphical association models
    • Lauritzen, S. L. (1992). Propagation of Probabilities, Means, and Variances in Mixed Graphical Association Models. Journal of the American Statistical Association, 87(420), 1098-1108. doi:10.2307/2290647
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.420 , pp. 1098-1108
    • Lauritzen, S.L.1
  • 11
    • 1942418103 scopus 로고    scopus 로고
    • Exact inference in networks with discrete children of continuous parents
    • Morgan Kaufmann
    • Lerner, U. (2001). Exact inference in networks with discrete children of continuous parents. in: J. Breese, D. Koller (Eds.), Uncertainty in Artificial Intelligence (pp. 319-328). Morgan Kaufmann.
    • (2001) J. Breese, D. Koller (Eds.), Uncertainty in Artificial Intelligence , pp. 319-328
    • Lerner, U.1
  • 12
    • 77949503618 scopus 로고    scopus 로고
    • Using dynamic Bayesian networks for prognostic modelling to inform maintenance decision making
    • Presented at the IEEE International Conference on Industrial Engineering and Engineering Management 2009. IEEM 2009, IEEE
    • McNaught, K. R., & Zagorecki, A. (2009). Using dynamic Bayesian networks for prognostic modelling to inform maintenance decision making. IEEE International Conference on Industrial Engineering and Engineering Management, 2009. IEEM 2009 (pp. 1155-1159). Presented at the IEEE International Conference on Industrial Engineering and Engineering Management, 2009. IEEM 2009, IEEE. doi:10.1109/IEEM.2009.5372973
    • (2009) IEEE International Conference on Industrial Engineering and Engineering Management, 2009. IEEM 2009 , pp. 1155-1159
    • McNaught, K.R.1    Zagorecki, A.2
  • 14
    • 49349090118 scopus 로고    scopus 로고
    • An implementation of prognosis with dynamic bayesian networks
    • Presented at the 2008 IEEE Aerospace Conference, IEEE
    • Przytula, K. W., & Choi, A. (2008). An Implementation of Prognosis with Dynamic Bayesian Networks. 2008 IEEE Aerospace Conference (pp. 1-8). Presented at the 2008 IEEE Aerospace Conference, IEEE. doi:10.1109/AERO.2008.4526616
    • (2008) 2008 IEEE Aerospace Conference , pp. 1-8
    • Przytula, K.W.1    Choi, A.2
  • 17
    • 33847608791 scopus 로고    scopus 로고
    • Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization
    • Sahin, F., Yavuz, M. Ç., Arnavut, Z., & Uluyol, Ö. (2007). Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization. Parallel Computing, 33(2), 124-143. doi:16/j.parco.2006.11.005
    • (2007) Parallel Computing , vol.33 , Issue.2 , pp. 124-143
    • Sahin, F.1    Yavuz M.Ç.2    Arnavut, Z.3    Uluyol Ö.4
  • 18
    • 82955207719 scopus 로고    scopus 로고
    • Uncertainty quantification in structural damage diagnosis
    • Sankararaman, S., & Mahadevan, S. (2011). Uncertainty quantification in structural damage diagnosis. Structural Control and Health Monitoring, 18(8), 807-824. doi:10.1002/stc.400
    • (2011) Structural Control and Health Monitoring , vol.18 , Issue.8 , pp. 807-824
    • Sankararaman, S.1    Mahadevan, S.2
  • 20
    • 70349556022 scopus 로고    scopus 로고
    • Stochastic modeling of deterioration processes through dynamic bayesian networks
    • Straub, D. (2009). Stochastic Modeling of Deterioration Processes through Dynamic Bayesian Networks. Journal of Engineering Mechanics, 135(10), 1089-1099. doi:10.1061/(ASCE)EM.1943-7889.0000024
    • (2009) Journal of Engineering Mechanics , vol.135 , Issue.10 , pp. 1089-1099
    • Straub, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.