-
1
-
-
0036475447
-
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
-
Arulampalam, M. S., Maskell, S., & Gordon, N. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 50, 174-188.
-
(2002)
IEEE TRANSACTIONS on SIGNAL PROCESSING
, vol.50
, pp. 174-188
-
-
Arulampalam, M.S.1
Maskell, S.2
Gordon, N.3
-
2
-
-
0002436850
-
Tractable inference for complex stochastic processes
-
UAI'98. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from
-
Boyen, X., & Koller, D. (1998). Tractable inference for complex stochastic processes. Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, UAI'98 (pp. 33-42). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from http://dl.acm.org/citation.cfm?id=2074094.2074099
-
(1998)
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence
, pp. 33-42
-
-
Boyen, X.1
Koller, D.2
-
3
-
-
33750110031
-
Dynamic Bayesian networks for machine diagnostics: Hierarchical hidden Markov models vs. Competitive learning
-
Presented at the 2005 IEEE International Joint Conference on Neural Networks 2005. IJCNN '05. Proceedings, IEEE
-
Camci, F., & Chinnam, R. B. (2005). Dynamic Bayesian networks for machine diagnostics: hierarchical hidden Markov models vs. competitive learning. 2005 IEEE International Joint Conference on Neural Networks, 2005. IJCNN '05. Proceedings (Vol. 3, pp. 1752- 1757 vol. 3). Presented at the 2005 IEEE International Joint Conference on Neural Networks, 2005. IJCNN '05. Proceedings, IEEE. doi:10.1109/IJCNN.2005.1556145
-
(2005)
2005 IEEE International Joint Conference on Neural Networks, 2005. IJCNN '05. Proceedings
, vol.3
, pp. 1752-1757
-
-
Camci, F.1
Chinnam, R.B.2
-
4
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4), 309-347. doi:10.1007/BF00994110
-
(1992)
Machine Learning
, vol.9
, Issue.4
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
5
-
-
33750071718
-
A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests
-
de Campos, L. M. (2006). A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests. J. Mach. Learn. Res., 7, 2149-2187.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2149-2187
-
-
De Campos, L.M.1
-
9
-
-
76649121202
-
Localizing transient faults using dynamic bayesian networks
-
Presented at the High Level Design Validation and Test Workshop 2009. HLDVT 2009. IEEE International, IEEE
-
Jha, S., Wenchao Li, & Seshia, S. A. (2009). Localizing transient faults using dynamic bayesian networks. High Level Design Validation and Test Workshop, 2009. HLDVT 2009. IEEE International (pp. 82-87). Presented at the High Level Design Validation and Test Workshop, 2009. HLDVT 2009. IEEE International, IEEE. doi:10.1109/HLDVT.2009.5340170
-
(2009)
High Level Design Validation and Test Workshop, 2009. HLDVT 2009.IEEE International
, pp. 82-87
-
-
Jha, S.1
Li, W.2
Seshia, S.A.3
-
10
-
-
84950442428
-
Propagation of probabilities, means, and variances in mixed graphical association models
-
Lauritzen, S. L. (1992). Propagation of Probabilities, Means, and Variances in Mixed Graphical Association Models. Journal of the American Statistical Association, 87(420), 1098-1108. doi:10.2307/2290647
-
(1992)
Journal of the American Statistical Association
, vol.87
, Issue.420
, pp. 1098-1108
-
-
Lauritzen, S.L.1
-
11
-
-
1942418103
-
Exact inference in networks with discrete children of continuous parents
-
Morgan Kaufmann
-
Lerner, U. (2001). Exact inference in networks with discrete children of continuous parents. in: J. Breese, D. Koller (Eds.), Uncertainty in Artificial Intelligence (pp. 319-328). Morgan Kaufmann.
-
(2001)
J. Breese, D. Koller (Eds.), Uncertainty in Artificial Intelligence
, pp. 319-328
-
-
Lerner, U.1
-
12
-
-
77949503618
-
Using dynamic Bayesian networks for prognostic modelling to inform maintenance decision making
-
Presented at the IEEE International Conference on Industrial Engineering and Engineering Management 2009. IEEM 2009, IEEE
-
McNaught, K. R., & Zagorecki, A. (2009). Using dynamic Bayesian networks for prognostic modelling to inform maintenance decision making. IEEE International Conference on Industrial Engineering and Engineering Management, 2009. IEEM 2009 (pp. 1155-1159). Presented at the IEEE International Conference on Industrial Engineering and Engineering Management, 2009. IEEM 2009, IEEE. doi:10.1109/IEEM.2009.5372973
-
(2009)
IEEE International Conference on Industrial Engineering and Engineering Management, 2009. IEEM 2009
, pp. 1155-1159
-
-
McNaught, K.R.1
Zagorecki, A.2
-
13
-
-
0002404989
-
A rational analytic theory of fatigue
-
Paris, P. C., Gomez, M. P., & Anderson, W. E. (1961). A Rational Analytic Theory of Fatigue. The Trend in Engineering, 13, 9-14.
-
(1961)
The Trend in Engineering
, vol.13
, pp. 9-14
-
-
Paris, P.C.1
Gomez, M.P.2
Anderson, W.E.3
-
14
-
-
49349090118
-
An implementation of prognosis with dynamic bayesian networks
-
Presented at the 2008 IEEE Aerospace Conference, IEEE
-
Przytula, K. W., & Choi, A. (2008). An Implementation of Prognosis with Dynamic Bayesian Networks. 2008 IEEE Aerospace Conference (pp. 1-8). Presented at the 2008 IEEE Aerospace Conference, IEEE. doi:10.1109/AERO.2008.4526616
-
(2008)
2008 IEEE Aerospace Conference
, pp. 1-8
-
-
Przytula, K.W.1
Choi, A.2
-
16
-
-
34247193980
-
A Bayesian approach to efficient diagnosis of incipient faults
-
Roychoudhury, I., Biswas, G., & Koutsoukos, X. (2006). A Bayesian approach to efficient diagnosis of incipient faults. IN PROC. 17TH INT. WORKSHOP PRINCIPLES OF DIAGNOSIS, 243-250.
-
(2006)
PROC. 17TH INT. WORKSHOP PRINCIPLES of DIAGNOSIS
, pp. 243-250
-
-
Roychoudhury, I.1
Biswas, G.2
Koutsoukos, X.3
-
17
-
-
33847608791
-
Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization
-
Sahin, F., Yavuz, M. Ç., Arnavut, Z., & Uluyol, Ö. (2007). Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization. Parallel Computing, 33(2), 124-143. doi:16/j.parco.2006.11.005
-
(2007)
Parallel Computing
, vol.33
, Issue.2
, pp. 124-143
-
-
Sahin, F.1
Yavuz M.Ç.2
Arnavut, Z.3
Uluyol Ö.4
-
18
-
-
82955207719
-
Uncertainty quantification in structural damage diagnosis
-
Sankararaman, S., & Mahadevan, S. (2011). Uncertainty quantification in structural damage diagnosis. Structural Control and Health Monitoring, 18(8), 807-824. doi:10.1002/stc.400
-
(2011)
Structural Control and Health Monitoring
, vol.18
, Issue.8
, pp. 807-824
-
-
Sankararaman, S.1
Mahadevan, S.2
-
19
-
-
0026056182
-
Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base
-
Shwe, M. A., Middleton, B., Heckerman, D. E., Henrion, M., Horvitz, E. J., Lehmann, H. P., & Cooper, G. F. (1991). Probabilistic Diagnosis Using a Reformulation of the INTERNIST-1/QMR Knowledge Base. Methods of Information in Medicine, 30, 241-55.
-
(1991)
Methods of Information in Medicine
, vol.30
, pp. 241-255
-
-
Shwe, M.A.1
Middleton, B.2
Heckerman, D.E.3
Henrion, M.4
Horvitz, E.J.5
Lehmann, H.P.6
Cooper, G.F.7
-
20
-
-
70349556022
-
Stochastic modeling of deterioration processes through dynamic bayesian networks
-
Straub, D. (2009). Stochastic Modeling of Deterioration Processes through Dynamic Bayesian Networks. Journal of Engineering Mechanics, 135(10), 1089-1099. doi:10.1061/(ASCE)EM.1943-7889.0000024
-
(2009)
Journal of Engineering Mechanics
, vol.135
, Issue.10
, pp. 1089-1099
-
-
Straub, D.1
|