메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Ensemble of data-driven prognostic algorithms with weight optimization and k-fold cross validation

Author keywords

[No Author keywords available]

Indexed keywords

STATISTICAL TESTS; SYSTEMS ENGINEERING;

EID: 84920508984     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (27)
  • 1
    • 0030106093 scopus 로고    scopus 로고
    • Applications of maintenance optimization models: A review and analysis
    • Dekker, R. (1996). Applications of maintenance optimization models: a review and analysis, Reliability Engineering and System Safety, vol. 51, no. 3, pp. 229-240.
    • (1996) Reliability Engineering and System Safety , vol.51 , Issue.3 , pp. 229-240
    • Dekker, R.1
  • 3
    • 57749091877 scopus 로고    scopus 로고
    • Prognostic degradation models for computing and updating residual life distributions in a time-varying environment
    • Gebraeel, N. &Pan, J. (2008). Prognostic degradation models for computing and updating residual life distributions in a time-varying environment, IEEE Transactions on Reliability, vol. 57, no. 4, pp. 539-550.
    • (2008) IEEE Transactions on Reliability , vol.57 , Issue.4 , pp. 539-550
    • Gebraeel, N.1    Pan, J.2
  • 4
    • 63149182784 scopus 로고    scopus 로고
    • Residual life predictions in the absence of prior degradation knowledge
    • Gebraeel, N., Elwany, A. &Pan J. (2009). Residual life predictions in the absence of prior degradation knowledge, IEEE Transactions on Reliability, vol. 58, no. 1, pp. 106-117.
    • (2009) IEEE Transactions on Reliability , vol.58 , Issue.1 , pp. 106-117
    • Gebraeel, N.1    Elwany, A.2    Pan, J.3
  • 7
    • 70349470960 scopus 로고    scopus 로고
    • A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear power plant
    • Zio, E. &Di Maio, F. (2010). A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear power plant, Reliability Engineering and System Safety, vol. 95, no. 1, pp. 49-57.
    • (2010) Reliability Engineering and System Safety , vol.95 , Issue.1 , pp. 49-57
    • Zio, E.1    Di Maio, F.2
  • 13
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • R.J. Mammone, ed., Chapman-Hall
    • Perrone, M.P., and Cooper, L.N. (1993). When networks disagree: ensemble methods for hybrid neural networks, Neural Networks for Speech and Image Processing. R.J. Mammone, ed., Chapman-Hall, 1993.
    • (1993) Neural Networks for Speech and Image Processing , vol.1993
    • Perrone, M.P.1    Cooper, L.N.2
  • 17
    • 33847107996 scopus 로고    scopus 로고
    • EMD: An ensemble algorithm for discovering regulatory motifs in DNA sequences
    • Hu, J., Yang, Y.D. &Kihara, D. (2006). EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences, BMC bioinformatics, vol. 7, no. 342.
    • (2006) BMC Bioinformatics , vol.7 , Issue.342
    • Hu, J.1    Yang, Y.D.2    Kihara, D.3
  • 18
    • 67349260139 scopus 로고    scopus 로고
    • Construct support vector machine ensemble to detect traffic incident
    • Chen, S., Wang, W. &Zuylen, H. (2009). Construct support vector machine ensemble to detect traffic incident, Expert Systems with Applications, vol. 36, no. 8, pp. 10976-10986.
    • (2009) Expert Systems with Applications , vol.36 , Issue.8 , pp. 10976-10986
    • Chen, S.1    Wang, W.2    Zuylen, H.3
  • 19
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • Evensen, G. (2003). The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynamics, vol. 53, no. 4, pp. 343-367.
    • (2003) Ocean Dynamics , vol.53 , Issue.4 , pp. 343-367
    • Evensen, G.1
  • 21
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M.E. (2001). Sparse Bayesian learning and the relevance vector machine, Journal of Machine Learning Research, vol. 1, p211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 22
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A.J. &Schlkopf, B. (2004). A tutorial on support vector regression, Statistics and Computing, vol. 14, no. 3, pp. 199-222.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schlkopf, B.2
  • 23
    • 33847104144 scopus 로고    scopus 로고
    • Organization of the state space of a simple recurrent network before and after training on recursive linguistic structures
    • Cernansky, M., Makula, M. &Cernansky, L., (2007). Organization of the state space of a simple recurrent network before and after training on recursive linguistic structures, Neural Networks, vol. 20, no. 2, pp. 236-244.
    • (2007) Neural Networks , vol.20 , Issue.2 , pp. 236-244
    • Cernansky, M.1    Makula, M.2    Cernansky, L.3
  • 25
    • 0032121723 scopus 로고    scopus 로고
    • Online monitors keep transformers in service
    • Leibfried, T. (1998). Online monitors keep transformers in service, IEEE. Computer Applications in Power, vol. 11, no. 3, pp. 36-42.
    • (1998) IEEE. Computer Applications in Power , vol.11 , Issue.3 , pp. 36-42
    • Leibfried, T.1
  • 26
    • 0034261995 scopus 로고    scopus 로고
    • Measurements of mechanical vibrations at magnetic cores of power transformers with fiber-optic interferometric intrinsic sensor
    • Rivera, H.L., Garcia-Souto, J.A. &Sanz, J. (2000) Measurements of mechanical vibrations at magnetic cores of power transformers with fiber-optic interferometric intrinsic sensor, IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, no. 5, p788-797.
    • (2000) IEEE Journal on Selected Topics in Quantum Electronics , vol.6 , Issue.5 , pp. 788-797
    • Rivera, H.L.1    Garcia-Souto, J.A.2    Sanz, J.3
  • 27
    • 23844454565 scopus 로고    scopus 로고
    • Decomposition methods for structural reliability analysis
    • Xu, H. &Rahman, S. (2005). Decomposition methods for structural reliability analysis, Probabilistic Engineering Mechanics, vol. 20, no. 3, pp. 239-250
    • (2005) Probabilistic Engineering Mechanics , vol.20 , Issue.3 , pp. 239-250
    • Xu, H.1    Rahman, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.