-
2
-
-
0346586663
-
SMOTE: Synthetic minority oversampling technique
-
N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, "SMOTE: Synthetic minority oversampling technique," J. Artif. Intell. Res., vol. 16, pp. 321-357, 2002.
-
(2002)
J. Artif. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
3
-
-
0003102944
-
Maximum likelihood estimation of observer error-rates using the em algorithm
-
A. P. Dawid and A. M. Skene, "Maximum likelihood estimation of observer error-rates using the EM algorithm," Appl. Stat., vol. 28, no. 1, pp. 20-28, 1979.
-
(1979)
Appl. Stat.
, vol.28
, Issue.1
, pp. 20-28
-
-
Dawid, A.P.1
Skene, A.M.2
-
4
-
-
70350681833
-
Efficiently learning the accuracy of labeling sources for selective sampling
-
P. Donmez, J. G. Carbonell, and J. Schneider, "Efficiently learning the accuracy of labeling sources for selective sampling," in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2009, pp. 259-268.
-
(2009)
Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 259-268
-
-
Donmez, P.1
Carbonell, J.G.2
Schneider, J.3
-
5
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
A. Estabrooks, T. Jo, and N. Japkowicz, "A multiple resampling method for learning from imbalanced data sets," Comput. Intell., vol. 20, no. 1, pp. 18-36, 2004.
-
(2004)
Comput. Intell.
, vol.20
, Issue.1
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
6
-
-
0004012196
-
-
2nd ed. Boca Raton, FL, USA: CRC
-
A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2nd ed. Boca Raton, FL, USA: CRC, 2003.
-
(2003)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
7
-
-
84876057388
-
A survey on instance selection for active learning
-
Y. Fu, X. Zhu, and B. Li, "A survey on instance selection for active learning," Knowl. Inform. Syst., vol. 35, no. 2, pp. 249-283, 2013.
-
(2013)
Knowl. Inform. Syst.
, vol.35
, Issue.2
, pp. 249-283
-
-
Fu, Y.1
Zhu, X.2
Li, B.3
-
8
-
-
68549133155
-
Learning from imbalanced data
-
Sep.
-
H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
9
-
-
84877155007
-
CLOVER: A faster prior-free approach to rare-category detection
-
H. Huang, Q. He, K. Chiew, F. Qian, and L. Ma, "CLOVER: A faster prior-free approach to rare-category detection," Knowl. Inform. Syst., vol. 35, no. 3, pp. 713-736, 2013.
-
(2013)
Knowl. Inform. Syst.
, vol.35
, Issue.3
, pp. 713-736
-
-
Huang, H.1
He, Q.2
Chiew, K.3
Qian, F.4
Ma, L.5
-
10
-
-
77956245055
-
Quality management on amazon mechanical turk
-
P. Ipeirotis, F. Provost, and J. Wang, "Quality management on amazon mechanical turk," in Proc. 16th ACM SIGKDD Workshop Human Comput., 2010, pp. 64-67.
-
(2010)
Proc. 16th ACM SIGKDD Workshop Human Comput.
, pp. 64-67
-
-
Ipeirotis, P.1
Provost, F.2
Wang, J.3
-
11
-
-
84868280190
-
A convex formulation for learning from crowds
-
H., Kajino, Y. Tsuboi, and H. Kashima, "A convex formulation for learning from crowds," in Proc. 26th AAAI Conf. Artif. Intell., 2012, pp. 73-79.
-
(2012)
Proc. 26th AAAI Conf. Artif. Intell.
, pp. 73-79
-
-
Kajino, H.1
Tsuboi, Y.2
Kashima, H.3
-
13
-
-
77949543086
-
Cost-sensitive learning
-
Berlin, Germany: Springer
-
C. X. Ling and V. S. Sheng, "Cost-sensitive learning," in Encyclopedia of Machine Learning. Berlin, Germany: Springer, 2010, pp. 231-235.
-
(2010)
Encyclopedia of Machine Learning
, pp. 231-235
-
-
Ling, C.X.1
Sheng, V.S.2
-
14
-
-
84878083672
-
Exploratory under sampling for class imbalance learning
-
X. Y. Liu, J. Wu, and Z. H. Zhou, "Exploratory under sampling for class imbalance learning," in Proc. IEEE 6th Int. Conf. Data Mining, 2006, pp. 965-969.
-
(2006)
Proc. IEEE 6th Int. Conf. Data Mining
, pp. 965-969
-
-
Liu, X.Y.1
Wu, J.2
Zhou, Z.H.3
-
15
-
-
84904424108
-
Generalized k-labelsets ensemble for multi-label and cost-sensitive classification
-
H. Y. Lo, S. D. Lin, and H. M. Wang, "Generalized k-labelsets ensemble for multi-label and cost-sensitive classification," IEEE Trans. Knowl. Data Eng., vol. 26, no. 7, pp. 1679-1691, 2014.
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.7
, pp. 1679-1691
-
-
Lo, H.Y.1
Lin, S.D.2
Wang, H.M.3
-
16
-
-
79957460742
-
Cost-sensitive multi-label learning for audio tag annotation and retrieval
-
Jun.
-
H. Y. Lo, J. C. Wang, H. M., Wang, and S. D., Lin, "Cost-sensitive multi-label learning for audio tag annotation and retrieval," IEEE Trans. Multimedia, vol. 13, no. 3, pp. 518-529, Jun. 2011.
-
(2011)
IEEE Trans. Multimedia
, vol.13
, Issue.3
, pp. 518-529
-
-
Lo, H.Y.1
Wang, J.C.2
Wang, H.M.3
Lin, S.D.4
-
17
-
-
57049157739
-
A web-based game for collecting music metadata
-
M. I. Mandel and D. P. W. Ellis, "A web-based game for collecting music metadata," J. New Music Res., vol. 37, no. 2, pp. 151-165, 2008.
-
(2008)
J. New Music Res.
, vol.37
, Issue.2
, pp. 151-165
-
-
Mandel, M.I.1
Ellis, D.P.W.2
-
18
-
-
84875454178
-
On measuring the performance of binary classifiers
-
C. Parker, "On measuring the performance of binary classifiers," Knowl. Inform. Syst., vol. 35, no. 1, pp. 131-152, 2013.
-
(2013)
Knowl. Inform. Syst.
, vol.35
, Issue.1
, pp. 131-152
-
-
Parker, C.1
-
20
-
-
77951954464
-
Learning from crowds
-
V. C. Raykar, S. Yu, L. H. Zhao, C. Florin, G. H. Valadez, L. Bogoni, and L. Moy, "Learning from crowds," J. Mach. Learn. Res., vol. 11, pp. 1297-1322, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1297-1322
-
-
Raykar, V.C.1
Yu, S.2
Zhao, L.H.3
Florin, C.4
Valadez, G.H.5
Bogoni, L.6
Moy, L.7
-
21
-
-
84857168380
-
Simple multiple noisy label utilization strategies
-
V. S. Sheng, "Simple multiple noisy label utilization strategies," in Proc. IEEE 11th Int. Conf. Data Mining, 2011, pp. 635-644.
-
(2011)
Proc. IEEE 11th Int. Conf. Data Mining
, pp. 635-644
-
-
Sheng, V.S.1
-
22
-
-
65449144451
-
Get another label? Improving data quality and data mining using multiple, nosiy labeler
-
V. S. Sheng, F. Provost, and P. Ipeirotis, "Get another label? Improving data quality and data mining using multiple, nosiy labeler," in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2008, pp. 614-662.
-
(2008)
Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 614-662
-
-
Sheng, V.S.1
Provost, F.2
Ipeirotis, P.3
-
23
-
-
65449137414
-
Knowledge discovery in large image database: Dealing with uncertainties in ground truth
-
P. Smyth, M. C. Burl, U. M. Fayyad, and P. Perona, "Knowledge discovery in large image database: Dealing with uncertainties in ground truth," in Proc. Knowl. Discovery Database: Papers AAAI Workshop, 1994, pp. 109-120.
-
(1994)
Proc. Knowl. Discovery Database: Papers AAAI Workshop
, pp. 109-120
-
-
Smyth, P.1
Burl, M.C.2
Fayyad, U.M.3
Perona, P.4
-
24
-
-
85153964878
-
Inferring ground truth from subjective labeling of venus images
-
P. Smyth, M. C. Burl, U. M. Fayyad, P. Perona, and P. Baldi, "Inferring ground truth from subjective labeling of venus images," Adv. Neural Inform. Process. Syst., vol. 8, pp. 1085-1092, 1995.
-
(1995)
Adv. Neural Inform. Process. Syst.
, vol.8
, pp. 1085-1092
-
-
Smyth, P.1
Burl, M.C.2
Fayyad, U.M.3
Perona, P.4
Baldi, P.5
-
25
-
-
80053360508
-
Cheap and fast-but is it good?
-
R. Snow, B. O'Connor, D. Jurafsky, and A. Ng, "Cheap and fast-But is it good?" in Proc. Conf. Empirical Methods Natural Lang. Process., 2008, pp. 254-263.
-
(2008)
Proc. Conf. Empirical Methods Natural Lang. Process
, pp. 254-263
-
-
Snow, R.1
O'Connor, B.2
Jurafsky, D.3
Ng, A.4
-
27
-
-
0036565589
-
An instance-weighting method to induce costsensitive trees
-
May
-
K. M. Ting, "An instance-weighting method to induce costsensitive trees," IEEE Trans. Knowl. Data Eng., vol. 14, no. 3, pp. 659-665, May 2002.
-
(2002)
IEEE Trans. Knowl. Data Eng.
, vol.14
, Issue.3
, pp. 659-665
-
-
Ting, K.M.1
-
29
-
-
77956536129
-
Online crowdsourcing: Rating annotators and obtaining cost-effective labels
-
P. Welinder and P. Perona, "Online crowdsourcing: Rating annotators and obtaining cost-effective labels," in Proc. Workshop Adv. Comput. Vis. Humans Loop, 2010, pp. 25-32.
-
(2010)
Proc. Workshop Adv. Comput. Vis. Humans Loop
, pp. 25-32
-
-
Welinder, P.1
Perona, P.2
-
30
-
-
77951951247
-
Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
-
J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan, "Whose vote should count more: Optimal integration of labels from labelers of unknown expertise," in Proc. Adv. Neural Info. Process. Syst. 22, 2009, pp. 2035-2043.
-
(2009)
Proc. Adv. Neural Info. Process. Syst. 22
, pp. 2035-2043
-
-
Whitehill, J.1
Ruvolo, P.2
Wu, T.3
Bergsma, J.4
Movellan, J.5
-
31
-
-
0003957032
-
-
2nd ed. San Mateo, CA, USA: Morgan Kaufman, Jun.
-
I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. San Mateo, CA, USA: Morgan Kaufman, Jun. 2005.
-
(2005)
Data Mining: Practical Machine Learning Tools and Techniques
-
-
Witten, I.H.1
Frank, E.2
-
32
-
-
80053140206
-
Modeling multiple annotator expertise in the semi-supervised learning scenario
-
Y. Yan, R. Rosales, G. Fung, and J. G. Dy, "Modeling multiple annotator expertise in the semi-supervised learning scenario," in Proc. 26th Conf. Uncertainity Artif. Intell., 2010, pp. 674-682.
-
(2010)
Proc. 26th Conf. Uncertainity Artif. Intell.
, pp. 674-682
-
-
Yan, Y.1
Rosales, R.2
Fung, G.3
Dy, J.G.4
-
33
-
-
80053455236
-
Active learning from crowds
-
Y. Yan, R. Rosales, G. Fung, and J. G. Dy, "Active learning from crowds," in Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 1161-1168.
-
(2011)
Proc. 28th Int. Conf. Mach. Learn.
, pp. 1161-1168
-
-
Yan, Y.1
Rosales, R.2
Fung, G.3
Dy, J.G.4
-
34
-
-
33749245586
-
Cost-sensitive learning by cost-proportionate example weighting
-
B. Zadrozny, J. Langford, and N. Abe, "Cost-sensitive learning by cost-proportionate example weighting," in Proc. 3rd IEEE Int. Conf. Data Mining, 2003, pp. 435-442.
-
(2003)
Proc. 3rd IEEE Int. Conf. Data Mining
, pp. 435-442
-
-
Zadrozny, B.1
Langford, J.2
Abe, N.3
|