-
1
-
-
0000580136
-
-
PLRAAN 1050-2947
-
A. S. Pikovsky, Phys. Rev. A 43, 3146 (1991). PLRAAN 1050-2947 10.1103/PhysRevA.43.3146
-
(1991)
Phys. Rev. A
, vol.43
, pp. 3146
-
-
Pikovsky, A.S.1
-
2
-
-
0039765131
-
-
PDNPDT 0167-2789
-
P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, and A. Vulpiani, Physica D 134, 75 (1999). PDNPDT 0167-2789 10.1016/S0167-2789(99)00031-7
-
(1999)
Physica D
, vol.134
, pp. 75
-
-
Castiglione, P.1
Mazzino, A.2
Muratore-Ginanneschi, P.3
Vulpiani, A.4
-
4
-
-
4243563119
-
-
PYLAAG 0375-9601
-
A. Zacherl, T. Geisel, J. Nierwetberg, and G. Radons, Phys. Lett. A 114, 317 (1986). PYLAAG 0375-9601 10.1016/0375-9601(86)90568-2
-
(1986)
Phys. Lett. A
, vol.114
, pp. 317
-
-
Zacherl, A.1
Geisel, T.2
Nierwetberg, J.3
Radons, G.4
-
5
-
-
0040307478
-
-
PRPLCM 0370-1573
-
J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990). PRPLCM 0370-1573 10.1016/0370-1573(90)90099-N
-
(1990)
Phys. Rep.
, vol.195
, pp. 127
-
-
Bouchaud, J.P.1
Georges, A.2
-
6
-
-
85038344241
-
-
PRLTAO 0031-9007
-
R. Artuso and G. Cristadoro, Phys. Rev. Lett. 90, 244101 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.90.244101
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 244101
-
-
Artuso, R.1
Cristadoro, G.2
-
8
-
-
33344468216
-
-
PLEEE8 1539-3755;
-
D. P. Sanders and H. Larralde, Phys. Rev. E 73, 026205 (2006) PLEEE8 1539-3755; 10.1103/PhysRevE.73.026205
-
(2006)
Phys. Rev. e
, vol.73
, pp. 026205
-
-
Sanders, D.P.1
Larralde, H.2
-
9
-
-
85081852531
-
-
here the authors demonstrate that even for a model of finite horizon, high-order moments behave ballistically. This is due to a nontrivial correlation between collision events, hence the infinite horizon condition is not a necessary condition for our discussion
-
here the authors demonstrate that even for a model of finite horizon, high-order moments behave ballistically. This is due to a nontrivial correlation between collision events, hence the infinite horizon condition is not a necessary condition for our discussion.
-
-
-
-
10
-
-
40949120952
-
-
PLEEE8 1539-3755
-
M. Courbage, M. Edelman, S. M. Saberi Fathi, and G. M. Zaslavsky, Phys. Rev. E. 77, 036203 (2008). PLEEE8 1539-3755 10.1103/PhysRevE.77.036203
-
(2008)
Phys. Rev. E.
, vol.77
, pp. 036203
-
-
Courbage, M.1
Edelman, M.2
Saberi Fathi, S.M.3
Zaslavsky, G.M.4
-
13
-
-
0031571946
-
-
EULEEJ 0295-5075
-
P. Levitz, Europhys. Lett. 39, 593 (1997). EULEEJ 0295-5075 10.1209/epl/i1997-00394-5
-
(1997)
Europhys. Lett.
, vol.39
, pp. 593
-
-
Levitz, P.1
-
16
-
-
77249174890
-
-
(R). PLEEE8 1539-3755
-
N. Gal and D. Weihs, Phys. Rev. E 81, 020903 (R) (2010). PLEEE8 1539-3755 10.1103/PhysRevE.81.020903
-
(2010)
Phys. Rev. e
, vol.81
, pp. 020903
-
-
Gal, N.1
Weihs, D.2
-
17
-
-
0000771126
-
-
EPJBFY 1434-6028
-
K. H. Andersen, P. Castiglione, A. Mazzino, and A. Vulpiani, Eur. Phys. J. B 18, 447 (2000). EPJBFY 1434-6028 10.1007/s100510070032
-
(2000)
Eur. Phys. J. B
, vol.18
, pp. 447
-
-
Andersen, K.H.1
Castiglione, P.2
Mazzino, A.3
Vulpiani, A.4
-
18
-
-
0035537470
-
-
JSTPBS 0022-4715
-
C. Godreche and J. M. Luck, J. Stat. Phys. 104, 489 (2001). JSTPBS 0022-4715 10.1023/A:1010364003250
-
(2001)
J. Stat. Phys.
, vol.104
, pp. 489
-
-
Godreche, C.1
Luck, J.M.2
-
20
-
-
85081848488
-
-
deviations from biscaling are visible (Fig. 4, therein), possibly originating from finite-time effects
-
deviations from biscaling are visible (Fig. 4, therein), possibly originating from finite-time effects.
-
-
-
-
22
-
-
84885090142
-
-
1742-5468
-
R. Burioni, G. Gradenigo, A. Sarracino, A. Vezzani, and A. Vulpiani, J. Stat. Mech.: Theor. Exp. (2013) P09022. 1742-5468 10.1088/1742-5468/2013/09/P09022
-
J. Stat. Mech.: Theor. Exp.
, vol.2013
, pp. P09022
-
-
Burioni, R.1
Gradenigo, G.2
Sarracino, A.3
Vezzani, A.4
Vulpiani, A.5
-
23
-
-
84904319313
-
-
P. Bernabó, R. Burioni, S. Lepri, and A. Vezzani, Chaos, Solitons and Fractals 67, 11 (2014). 10.1016/j.chaos.2014.06.002
-
(2014)
Chaos, Solitons and Fractals
, vol.67
, pp. 11
-
-
Bernabó, P.1
Burioni, R.2
Lepri, S.3
Vezzani, A.4
-
24
-
-
0000566017
-
-
1063-651X
-
B. A. Carreras, V. E. Lynch, D. E. Newman, and G. M. Zaslavsky, Phys. Rev. E 60, 4770 (1999). 1063-651X 10.1103/PhysRevE.60.4770
-
(1999)
Phys. Rev. e
, vol.60
, pp. 4770
-
-
Carreras, B.A.1
Lynch, V.E.2
Newman, D.E.3
Zaslavsky, G.M.4
-
25
-
-
77957147151
-
-
PRLTAO 0031-9007
-
D. A. Kessler and E. Barkai, Phys. Rev. Lett. 105, 120602 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.105.120602
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 120602
-
-
Kessler, D.A.1
Barkai, E.2
-
26
-
-
84862215138
-
-
PRLTAO 0031-9007
-
A. Dechant and E. Lutz, Phys. Rev. Lett. 108, 230601 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.230601
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 230601
-
-
Dechant, A.1
Lutz, E.2
-
27
-
-
84877767153
-
-
PRLTAO 0031-9007
-
P. de Anna, T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, and P. Davy, Phys. Rev. Lett. 110, 184502 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.184502
-
(2013)
Phys. Rev. Lett.
, vol.110
, pp. 184502
-
-
De Anna, P.1
Le Borgne, T.2
Dentz, M.3
Tartakovsky, A.M.4
Bolster, D.5
Davy, P.6
-
28
-
-
0002641421
-
-
PRPLCM 0370-1573
-
R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000). PRPLCM 0370-1573 10.1016/S0370-1573(00)00070-3
-
(2000)
Phys. Rep.
, vol.339
, pp. 1
-
-
Metzler, R.1
Klafter, J.2
-
31
-
-
85081857743
-
-
linear generalized Langevin equations with colored Gaussian noise exhibit Gaussian non-Markovian anomalous diffusion
-
linear generalized Langevin equations with colored Gaussian noise exhibit Gaussian non-Markovian anomalous diffusion;
-
-
-
-
32
-
-
85081843494
-
-
it is still left to be shown if external nonlinear fields may induce strong anomalous diffusion
-
it is still left to be shown if external nonlinear fields may induce strong anomalous diffusion.
-
-
-
-
38
-
-
84918589410
-
-
EULEEJ 0295-5075
-
G. Cristadoro, T. Gilbert, M. Lenci, and D. P. Sanders, Europhys. Lett. 108, 50002 (2014). EULEEJ 0295-5075 10.1209/0295-5075/108/50002
-
(2014)
Europhys. Lett.
, vol.108
, pp. 50002
-
-
Cristadoro, G.1
Gilbert, T.2
Lenci, M.3
Sanders, D.P.4
-
39
-
-
84897825729
-
-
PRLTAO 0031-9007
-
A. Rebenshtok, S. Denisov, P. Hänggi, and E. Barkai, Phys. Rev. Lett. 112, 110601 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.110601
-
(2014)
Phys. Rev. Lett.
, vol.112
, pp. 110601
-
-
Rebenshtok, A.1
Denisov, S.2
Hänggi, P.3
Barkai, E.4
-
40
-
-
51249181565
-
-
ISJMAP 0021-2172
-
M. Thaler, Israel J. Math. 46, 67 (1983). ISJMAP 0021-2172 10.1007/BF02760623
-
(1983)
Israel J. Math.
, vol.46
, pp. 67
-
-
Thaler, M.1
-
43
-
-
60549099243
-
-
PRLTAO 0031-9007
-
N. Korabel and E. Barkai, Phys. Rev. Lett. 102, 050601 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.102.050601
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 050601
-
-
Korabel, N.1
Barkai, E.2
-
44
-
-
77957193474
-
-
PLEEE8 1539-3755
-
T. Akimoto and T. Miyaguchi, Phys. Rev. E. 82, 030102(R) (2010). PLEEE8 1539-3755 10.1103/PhysRevE.82.030102
-
(2010)
Phys. Rev. E.
, vol.82
, pp. 030102R
-
-
Akimoto, T.1
Miyaguchi, T.2
-
45
-
-
84862060018
-
-
PRLTAO 0031-9007;
-
T. Akimoto, Phys. Rev. Lett. 108, 164101 (2012) PRLTAO 0031-9007; 10.1103/PhysRevLett.108.164101
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 164101
-
-
Akimoto, T.1
-
46
-
-
85081852593
-
-
here the infinite density is considered for a reduced map (Equation presented) and in this sense the system is finite
-
here the infinite density is considered for a reduced map (Equation presented) and in this sense the system is finite.
-
-
-
-
47
-
-
84856908729
-
-
PRLTAO 0031-9007
-
N. Korabel and E. Barkai, Phys. Rev. Lett. 108, 060604 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.060604
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 060604
-
-
Korabel, N.1
Barkai, E.2
-
49
-
-
84885394196
-
-
1745-2473
-
E. Lutz and F. Renzoni, Nat. Phys. 9, 615 (2013). 1745-2473 10.1038/nphys2751
-
(2013)
Nat. Phys.
, vol.9
, pp. 615
-
-
Lutz, E.1
Renzoni, F.2
-
50
-
-
85081853591
-
-
P. C. Holz, A. Dechant, and E. Lutz, arXiv:1310.3425 [cond-mat.stat-mech].
-
P. C. Holz, A. Dechant, and E. Lutz, arXiv:1310.3425 [cond-mat.stat-mech].
-
-
-
-
51
-
-
85081849003
-
-
The Lévy walk in its original schematization was equipped with a constant velocity of the motion, (Equation presented), i.e., (Equation presented) [29]. Here we consider a generalization of the original model, "random walks with random velocities," where the velocity of the ballistic epochs is a random variable itself. Note that we use PDFs (Equation presented) that are symmetric and their moments are finite. Thus we remain in the domain of Levy walks
-
The Lévy walk in its original schematization was equipped with a constant velocity of the motion, (Equation presented), i.e., (Equation presented) [29]. Here we consider a generalization of the original model, "random walks with random velocities," where the velocity of the ballistic epochs is a random variable itself. Note that we use PDFs (Equation presented) that are symmetric and their moments are finite. Thus we remain in the domain of Levy walks;
-
-
-
-
52
-
-
48349117173
-
-
see also,. PLEEE8 1539-3755
-
see also V. Zaburdaev, M. Schmiedeberg, and H. Stark, Phys. Rev. E 78, 011119 (2008). PLEEE8 1539-3755 10.1103/PhysRevE.78.011119
-
(2008)
Phys. Rev. e
, vol.78
, pp. 011119
-
-
Zaburdaev, V.1
Schmiedeberg, M.2
Stark, H.3
-
53
-
-
36249011538
-
-
PRLTAO 0031-9007
-
A. Rebenshtok and E. Barkai, Phys. Rev. Lett. 99, 210601 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.99.210601
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 210601
-
-
Rebenshtok, A.1
Barkai, E.2
-
54
-
-
54949159002
-
-
JSTPBS 0022-4715
-
A. Rebenshtok and E. Barkai, J. Stat. Phys. 133, 565 (2008). JSTPBS 0022-4715 10.1007/s10955-008-9610-3
-
(2008)
J. Stat. Phys.
, vol.133
, pp. 565
-
-
Rebenshtok, A.1
Barkai, E.2
-
55
-
-
0343743161
-
-
in, Lect. Not. in Phys., v. 511, edited by S. Benkadda and G. M. Zaslavsky (Springer, Berlin Heidelberg), pp.
-
E. Barkai and J. Klafter, in Chaos, Kinetics and Non-linear Dynamics in Fluids and Plasmas, Lect. Not. in Phys., v. 511, edited by S. Benkadda and G. M. Zaslavsky (Springer, Berlin Heidelberg, 1998), pp. 373-393.
-
(1998)
Chaos, Kinetics and Non-linear Dynamics in Fluids and Plasmas
, pp. 373-393
-
-
Barkai, E.1
Klafter, J.2
-
56
-
-
21844503941
-
-
JSTPBS 0022-4715
-
M. Kotulski, J. Stat. Phys. 81, 777 (1995). JSTPBS 0022-4715 10.1007/BF02179257
-
(1995)
J. Stat. Phys.
, vol.81
, pp. 777
-
-
Kotulski, M.1
-
57
-
-
35949027117
-
-
0556-2805
-
H. Scher and M. Lax, Phys. Rev. B 7, 4491 (1973). 0556-2805 10.1103/PhysRevB.7.4491
-
(1973)
Phys. Rev. B
, vol.7
, pp. 4491
-
-
Scher, H.1
Lax, M.2
-
58
-
-
0036828743
-
-
CMPHC2 0301-0104
-
E. Barkai, Chem. Phys. 284, 13 (2002). CMPHC2 0301-0104 10.1016/S0301-0104(02)00533-5
-
(2002)
Chem. Phys.
, vol.284
, pp. 13
-
-
Barkai, E.1
-
59
-
-
0036828937
-
-
CMPHC2 0301-0104
-
R. Kutner, Chem. Phys. 284, 481 (2002). CMPHC2 0301-0104 10.1016/S0301-0104(02)00675-4
-
(2002)
Chem. Phys.
, vol.284
, pp. 481
-
-
Kutner, R.1
-
62
-
-
0007126569
-
-
PRLTAO 0031-9007
-
A. Ott, J. P. Bouchaud, D. Langevin, and W. Urbach, Phys. Rev. Lett. 65, 2201 (1990). PRLTAO 0031-9007 10.1103/PhysRevLett.65.2201
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 2201
-
-
Ott, A.1
Bouchaud, J.P.2
Langevin, D.3
Urbach, W.4
-
63
-
-
0036828773
-
-
CMPHC2 0301-0104
-
Y. Jung, E. Barkai, and R. Silbey, Chem. Phys. 284, 181 (2002). CMPHC2 0301-0104 10.1016/S0301-0104(02)00547-5
-
(2002)
Chem. Phys.
, vol.284
, pp. 181
-
-
Jung, Y.1
Barkai, E.2
Silbey, R.3
-
64
-
-
18144424024
-
-
PRLTAO 0031-9007
-
G. Margolin and E. Barkai, Phys. Rev. Lett. 94, 080601 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.94.080601
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 080601
-
-
Margolin, G.1
Barkai, E.2
-
65
-
-
33749643824
-
-
JPCBFK 1520-6106
-
G. Margolin, V. Protasenko, M. Kuno, and E. Barkai, J. Phys. Chem. B 110, 19053 (2006). JPCBFK 1520-6106 10.1021/jp061487m
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 19053
-
-
Margolin, G.1
Protasenko, V.2
Kuno, M.3
Barkai, E.4
-
67
-
-
84857821961
-
-
PRLTAO 0031-9007
-
Y. Sagi, M. Brook, I. Almog, and N. Davidson, Phys. Rev. Lett. 108, 093002 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.093002
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 093002
-
-
Sagi, Y.1
Brook, M.2
Almog, I.3
Davidson, N.4
-
68
-
-
84862235357
-
-
PRLTAO 0031-9007
-
D. A. Kessler and E. Barkai, Phys. Rev. Lett. 108, 230602 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.230602
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 230602
-
-
Kessler, D.A.1
Barkai, E.2
-
69
-
-
79961066357
-
-
RMPHAT 0034-6861
-
O. Benichou, C. Loverdo, M. Moreau, and R. Voituriez, Rev. Mod. Phys. 83, 81 (2011). RMPHAT 0034-6861 10.1103/RevModPhys.83.81
-
(2011)
Rev. Mod. Phys.
, vol.83
, pp. 81
-
-
Benichou, O.1
Loverdo, C.2
Moreau, M.3
Voituriez, R.4
-
72
-
-
84897782255
-
-
PLEEE8 1539-3755
-
A. Figueiredo, T. M. Rocha Filho, M. A. Amato, Z. T. Oliveira Jr., and R. Matsushita, Phys. Rev. E 89, 022106 (2014). PLEEE8 1539-3755 10.1103/PhysRevE.89.022106
-
(2014)
Phys. Rev. e
, vol.89
, pp. 022106
-
-
Figueiredo, A.1
Rocha Filho, T.M.2
Amato, M.A.3
Oliveira, Jr.Z.T.4
Matsushita, R.5
-
73
-
-
84905460465
-
-
PLEEE8 1539-3755
-
C. B. Mendl and H. Spohn, Phys. Rev. E 90, 012147 (2014); PLEEE8 1539-3755 10.1103/PhysRevE.90.012147
-
(2014)
Phys. Rev. e
, vol.90
, pp. 012147
-
-
Mendl, C.B.1
Spohn, H.2
-
74
-
-
84905482131
-
-
PLEEE8 1539-3755
-
S. G. Das, A. Dhar, K. Saito, C. B. Mendl, and H. Spohn, Phys. Rev. E 90, 012124 (2014). PLEEE8 1539-3755 10.1103/PhysRevE.90.012124
-
(2014)
Phys. Rev. e
, vol.90
, pp. 012124
-
-
Das, S.G.1
Dhar, A.2
Saito, K.3
Mendl, C.B.4
Spohn, H.5
-
75
-
-
84860269300
-
-
ASRSDW 0273-1177;
-
G. Zimbardo, S. Perri, P. Pommois, and P. Veltri, Adv. Space Res. 49, 1633 (2012) ASRSDW 0273-1177; 10.1016/j.asr.2011.10.022
-
(2012)
Adv. Space Res.
, vol.49
, pp. 1633
-
-
Zimbardo, G.1
Perri, S.2
Pommois, P.3
Veltri, P.4
-
76
-
-
84887577266
-
-
AJLEEY 0004-637X
-
G. Zimbardo and S. Perri, Astrophys. J. 778, 35 (2013). AJLEEY 0004-637X 10.1088/0004-637X/778/1/35
-
(2013)
Astrophys. J.
, vol.778
, pp. 35
-
-
Zimbardo, G.1
Perri, S.2
-
77
-
-
78751668316
-
-
PPCPFQ 1463-9076
-
S. Burov, J. H. Jeon, R. Metzler, and E. Barkai, Phys. Chem. Chem. Phys. 13, 1800 (2011). PPCPFQ 1463-9076 10.1039/c0cp01879a
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 1800
-
-
Burov, S.1
Jeon, J.H.2
Metzler, R.3
Barkai, E.4
-
83
-
-
85081848710
-
-
In Fig. 4 (Equation presented) and hence the position (Equation presented) where the two solutions overlap is roughly (Equation presented) while in Fig. 5 (Equation presented), hence this point is shifted towards (Equation presented)
-
In Fig. 4 (Equation presented) and hence the position (Equation presented) where the two solutions overlap is roughly (Equation presented) while in Fig. 5 (Equation presented), hence this point is shifted towards (Equation presented).
-
-
-
-
84
-
-
85081853141
-
-
C. P. Dettmann, arXiv:1402.7010v1.
-
C. P. Dettmann, arXiv:1402.7010v1.
-
-
-
-
86
-
-
85081854688
-
-
Large-deviation theory deals with remote tails of distribution functions, for example, with the classical problem of summation of independent random variable with a common PDF. In this example large-deviation theory contains the Gaussian central limit theorem and extends it to the regime of large fluctuations [77]. It is still left to be seen if large-deviations theories can be used to obtain infinite densities for the Lévy walk problem
-
Large-deviation theory deals with remote tails of distribution functions, for example, with the classical problem of summation of independent random variable with a common PDF. In this example large-deviation theory contains the Gaussian central limit theorem and extends it to the regime of large fluctuations [77]. It is still left to be seen if large-deviations theories can be used to obtain infinite densities for the Lévy walk problem.
-
-
-
-
87
-
-
67650917097
-
-
PRPLCM 0370-1573
-
H. Touchete, Phys. Rep. 478, 1 (2009). PRPLCM 0370-1573 10.1016/j.physrep.2009.05.002
-
(2009)
Phys. Rep.
, vol.478
, pp. 1
-
-
Touchete, H.1
|