메뉴 건너뛰기




Volumn 82, Issue 3, 2010, Pages

Role of infinite invariant measure in deterministic subdiffusion

Author keywords

[No Author keywords available]

Indexed keywords

DIFFUSION COEFFICIENTS; ERGODIC THEORY; INVARIANT MEASURE; LIMIT DISTRIBUTION; MEAN SQUARE DISPLACEMENT; STATISTICAL PROPERTIES; SUBDIFFUSION; TIME-AVERAGED; TIME-DIFFERENCES; TRANSPORT COEFFICIENT;

EID: 77957193474     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.82.030102     Document Type: Article
Times cited : (56)

References (27)
  • 1
    • 0141508296 scopus 로고
    • 10.1103/PhysRevB.12.2455
    • H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975). 10.1103/PhysRevB.12.2455
    • (1975) Phys. Rev. B , vol.12 , pp. 2455
    • Scher, H.1    Montroll, E.W.2
  • 4
    • 26544477817 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.66.061104
    • A. Helmstetter and D. Sornette, Phys. Rev. E 66, 061104 (2002). 10.1103/PhysRevE.66.061104
    • (2002) Phys. Rev. e , vol.66 , pp. 061104
    • Helmstetter, A.1    Sornette, D.2
  • 5
  • 6
    • 0035976603 scopus 로고    scopus 로고
    • 10.1126/science.1064103
    • G. Seisenberger, Science 294, 1929 (2001). 10.1126/science.1064103
    • (2001) Science , vol.294 , pp. 1929
    • Seisenberger, G.1
  • 8
    • 33644885029 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.96.098102
    • I. Golding and E. C. Cox, Phys. Rev. Lett. 96, 098102 (2006). 10.1103/PhysRevLett.96.098102
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 098102
    • Golding, I.1    Cox, E.C.2
  • 9
    • 68849112331 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.103.018102
    • I. Bronstein, Phys. Rev. Lett. 103, 018102 (2009). 10.1103/PhysRevLett. 103.018102
    • (2009) Phys. Rev. Lett. , vol.103 , pp. 018102
    • Bronstein, I.1
  • 11
    • 68749091192 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.103.038102
    • J. Szymanski and M. Weiss, Phys. Rev. Lett. 103, 038102 (2009). 10.1103/PhysRevLett.103.038102
    • (2009) Phys. Rev. Lett. , vol.103 , pp. 038102
    • Szymanski, J.1    Weiss, M.2
  • 14
    • 77957189365 scopus 로고    scopus 로고
    • Usually, the ensemble average of an observable f is defined by f = ∫I fdμ, where μ is an invariant measure. However, in experiments, we can perform only a finite number of observations. Thus the quantity in an initial ensemble in EAMSD [Eq. ] is finite.
    • Usually, the ensemble average of an observable f is defined by f = ∫I fdμ, where μ is an invariant measure. However, in experiments, we can perform only a finite number of observations. Thus the quantity in an initial ensemble in EAMSD [Eq. ] is finite.
  • 16
    • 77957190841 scopus 로고    scopus 로고
    • Roughly speaking, orbits visit an arbitrarily small neighborhood of all points on I infinitely often (see)
    • Roughly speaking, orbits visit an arbitrarily small neighborhood of all points on I infinitely often (see).
  • 17
    • 77957198253 scopus 로고    scopus 로고
    • -1 E=E }.
    • -1 E=E}.
  • 19
    • 51249180972 scopus 로고
    • 10.1007/BF02803336
    • J. Aaronson, J. Anal. Math. 39, 203 (1981). 10.1007/BF02803336
    • (1981) J. Anal. Math. , vol.39 , pp. 203
    • Aaronson, J.1
  • 20
    • 77957198897 scopus 로고    scopus 로고
    • f (x) L+1 (μ) means that ∫I f (x) dμ <∞ and f (x) ≥0 on I.
    • f (x) L+1 (μ) means that ∫I f (x) dμ <∞ and f (x) ≥0 on I.
  • 21
    • 77957189272 scopus 로고    scopus 로고
    • 1+α) k zk Γ (1+kα ), where E is the expectation. Note that "normalized" means E ( Yα ) =1.
    • 1+α) k zk Γ (1+kα ), where E is the expectation. Note that "normalized" means E ( Yα ) =1.
  • 22
    • 51249181565 scopus 로고
    • 10.1007/BF02760623
    • M. Thaler, Isr. J. Math. 46, 67 (1983). 10.1007/BF02760623
    • (1983) Isr. J. Math. , vol.46 , pp. 67
    • Thaler, M.1
  • 23
    • 77957200825 scopus 로고    scopus 로고
    • A positive function U is regularly varying at ∞ with index α if U (tx ) /U (t) → xα, as t→∞ for every x>0.
    • A positive function U is regularly varying at ∞ with index α if U (tx ) /U (t) → xα, as t→∞ for every x>0.
  • 24
    • 4243157397 scopus 로고
    • 10.1103/PhysRevLett.52.1936
    • T. Geisel and S. Thomae, Phys. Rev. Lett. 52, 1936 (1984). 10.1103/PhysRevLett.52.1936
    • (1984) Phys. Rev. Lett. , vol.52 , pp. 1936
    • Geisel, T.1    Thomae, S.2
  • 25
    • 0038303215 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.90.104101
    • E. Barkai, Phys. Rev. Lett. 90, 104101 (2003). 10.1103/PhysRevLett.90. 104101
    • (2003) Phys. Rev. Lett. , vol.90 , pp. 104101
    • Barkai, E.1
  • 26
    • 0043179009 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.84.5998
    • J. Dräger and J. Klafter, Phys. Rev. Lett. 84, 5998 (2000). 10.1103/PhysRevLett.84.5998
    • (2000) Phys. Rev. Lett. , vol.84 , pp. 5998
    • Dräger, J.1    Klafter, J.2
  • 27
    • 77957199949 scopus 로고    scopus 로고
    • This is because the induced transformation defined by S A0 (x) = T A0 τ (x) (x) for x A0 with the return time function τ (x) =min {k≥1: T A0 k (x) A0} is fully chaotic and has a finite invariant measure, where T A0 (x) is the reduced map on [-1/2,1/2 ) in the same way as T1 (x). In particular, x(-1/2,- c2 ) ( c1 , c2 ) and x (- c2 ,- c1 ) ( c2 ,1/2 ) move to the left cell and to the right cell, respectively, where c2 + (2 c2 ) z =1 (0< c2 <1/2 ).
    • This is because the induced transformation defined by S A0 (x) = T A0 τ (x) (x) for x A0 with the return time function τ (x) =min {k≥1: T A0 k (x) A0} is fully chaotic and has a finite invariant measure, where T A0 (x) is the reduced map on [-1/2,1/2 ) in the same way as T1 (x). In particular, x(-1/2,- c2 ) ( c1, c2 ) and x (- c2,- c1 ) ( c2,1/2 ) move to the left cell and to the right cell, respectively, where c2 + (2 c2 ) z =1 (0< c2 <1/2 ).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.