-
1
-
-
41549101939
-
Model selection through sparse maximum likelihood estimation for multivarite Gaussian or binary data
-
Baneijee, O., Ghaoui, L. E., and d'Aspremont, A. Model selection through sparse maximum likelihood estimation for multivarite Gaussian or binary data. JMLR, 9:485- 516, 2008.
-
(2008)
JMLR
, vol.9
, pp. 485-516
-
-
Baneijee, O.1
Ghaoui, L.E.2
D'Aspremont, A.3
-
2
-
-
85014561619
-
A fast iterative shrinkage- thresholding algorithm for linear inverse problems
-
Beck, A. and Teboulle, M. A Fast Iterative Shrinkage- Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sciences, 2(1): 183-202, 2009.
-
(2009)
SIAM J. Imaging Sciences
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
3
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multi-pliers
-
Boyd, Stephen, Parikh, Neal, Chu, Eric, Peleato, Borja, and Eckstein, Jonathan. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends(§) in Machine Learning, 3(1): 1-122, 2011.
-
(2011)
Foundations and Trends(§) in Machine Learning
, vol.3
, Issue.1
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
4
-
-
79953201848
-
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
-
Chambolle, A. and Pock, T. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. J. Math. Imaging Vis., 40(1):120-145, 2011.
-
(2011)
J. Math. Imaging Vis.
, vol.40
, Issue.1
, pp. 120-145
-
-
Chambolle, A.1
Pock, T.2
-
5
-
-
84875889605
-
Constrained total variation models and fast algorithms based on alternating direction method of multipliers
-
Chan, R. H., Tao, M., and Yuan, X. Constrained total variation models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci., 6 (1), 2013.
-
(2013)
SIAM J. Imaging Sci.
, vol.6
, Issue.1
-
-
Chan, R.H.1
Tao, M.2
Yuan, X.3
-
6
-
-
84877732752
-
Optimal regularized dual averaging methods for stochastic optimization
-
Chen, Xi, Lin, Qihang, and Pena, Javier. Optimal regularized dual averaging methods for stochastic optimization. In Advances in Neural Information Processing Systems (NIPS-I2), pp. 404-412, 2012.
-
(2012)
Advances in Neural Information Processing Systems (NIPS-I2)
, pp. 404-412
-
-
Chen, X.1
Lin, Q.2
Pena, J.3
-
8
-
-
84967782959
-
On the numerical solution of the heat conduction problem in 2 and 3 space variables
-
Douglas, J. and Rachford, H. H. On the numerical solution of the heat conduction problem in 2 and 3 space variables. Tran. Amer. Math. Soc., 82:421-439, 1956.
-
(1956)
Tran. Amer. Math. Soc.
, vol.82
, pp. 421-439
-
-
Douglas, J.1
Rachford, H.H.2
-
9
-
-
75249102673
-
Online and Batch Learning using Forward-Backward Splitting
-
Duchi, J. and Singer, Y. Online and Batch Learning using Forward-Backward Splitting. J. Mach. Learning Res. (JMLR), 2009.
-
(2009)
J. Mach. Learning Res. (JMLR)
-
-
Duchi, J.1
Singer, Y.2
-
10
-
-
34249837486
-
On the Douglas- Rachoford splitting method and the proximal point algorithm for maximal monotone operators
-
Eckstein, J. and Bertsekas, D. P. On the Douglas- Rachoford splitting method and the proximal point algorithm for maximal monotone operators. Math. Prog., 55(3):292-318, 1992.
-
(1992)
Math. Prog.
, vol.55
, Issue.3
, pp. 292-318
-
-
Eckstein, J.1
Bertsekas, D.P.2
-
11
-
-
84871576447
-
Optimal stochastic approximation algorithms for strongly convex stochastic composite op-timization, i: A generic algorithmic framework
-
Ghadimi, S. and Lan, G. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, i: A generic algorithmic framework. SIAM J. Optimization, 22:1469-1492, 2012.
-
(2012)
SIAM J. Optimization
, vol.22
, pp. 1469-1492
-
-
Ghadimi, S.1
Lan, G.2
-
12
-
-
80052408863
-
Fast alternating linearization methods for minimizing the sum of two convex functions
-
Goldfarb, D., Ma, S., and Scheinberg, K. Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Prog. Ser. A, 2012.
-
(2012)
Math. Prog. Ser. a
-
-
Goldfarb, D.1
Ma, S.2
Scheinberg, K.3
-
14
-
-
85084017339
-
ML base:A Distributed Machine Learning System
-
Kraska, T., Talwalkar, A., J.Duchi, Griffith, R., Franklin, M., and Jordan, M.I. ML base:A Distributed Machine Learning System. In Conf. Innovative Data Systems Research, 2013.
-
(2013)
Conf. Innovative Data Systems Research
-
-
Kraska, T.1
Talwalkar, A.2
Griffith, R.3
Franklin, M.4
Jordan, M.I.5
Duchi, J.6
-
16
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4): 1574- 1609, 2009.
-
(2009)
SIAM Journal on Optimization
, vol.19
, Issue.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
19
-
-
84891310987
-
Stochastic alternating direction method of multipliers
-
Ouyang, Hua, He, Niao, Tran, Long, and Gray, Alexander G. Stochastic alternating direction method of multipliers. In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 80-88, 2013.
-
(2013)
thInternational Conference on Machine Learning (ICML-13)
, pp. 80-88
-
-
Ouyang, H.1
He, N.2
Tran, L.3
Gray, A.G.4
-
21
-
-
84862026135
-
Structured sparsity via alternating direction methods
-
Qin, Z. and Goldfarb, D. Structured sparsity via alternating direction methods. J. Machine Learning Research, 13: 1435-1468, 2012.
-
(2012)
J. Machine Learning Research
, vol.13
, pp. 1435-1468
-
-
Qin, Z.1
Goldfarb, D.2
-
22
-
-
0016985417
-
Monotone operators and the proximal point algorithm
-
Rockafellar, R. T. Monotone Operators and the Proximal Point Algorithm. SIAM J. Control Optim., 14(5):877- 989, 1976.
-
(1976)
SIAM J. Control Optim.
, vol.14
, Issue.5
, pp. 877-989
-
-
Rockafellar, R.T.1
-
23
-
-
84897554805
-
Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes
-
Shamir, Ohad and Zhang, Tong. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes. In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 71-79, 2013.
-
(2013)
th International Conference on Machine Learning (ICML-13)
, pp. 71-79
-
-
Shamir, O.1
Zhang, T.2
-
24
-
-
84919898301
-
Stochastic optimization for machine learning
-
Srebro, N. and Tewari, A. Stochastic Optimization for Machine Learning. ICML 2010 Tutorial, 2010.
-
(2010)
ICML 2010 Tutorial
-
-
Srebro, N.1
Tewari, A.2
-
27
-
-
78649396336
-
Dual averaging methods for regularized stochastic learning and online optimization
-
Xiao, L. Dual averaging methods for regularized stochastic learning and online optimization. JMLR, 11:2543-2596, 2010.
-
(2010)
JMLR
, vol.11
, pp. 2543-2596
-
-
Xiao, L.1
|