메뉴 건너뛰기




Volumn , Issue PART 2, 2013, Pages 1101-1109

Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING ALGORITHMS; LEARNING SYSTEMS; MARKOV PROCESSES; OPTIMIZATION;

EID: 84897543509     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (44)

References (25)
  • 1
    • 84867117736 scopus 로고    scopus 로고
    • How to grade a test without knowing the answers - A Bayesian graphical model for adaptive crowdsourcing and aptitude testing
    • Bachrach, Y., Minka, T., Guiver, J., and Graepel, T. How to grade a test without knowing the answers - a Bayesian graphical model for adaptive crowdsourcing and aptitude testing, In ICML, 2012.
    • (2012) ICML
    • Bachrach, Y.1    Minka, T.2    Guiver, J.3    Graepel, T.4
  • 3
    • 0003102944 scopus 로고
    • Maximum likelihood estimation of observer error-rates using the em algorithm
    • Dawid, A. P. and Skene, A. M. Maximum likelihood estimation of observer error-rates using the em algorithm. JRSS-C, 28:20-28, 1979.
    • (1979) JRSS-C , vol.28 , pp. 20-28
    • Dawid, A.P.1    Skene, A.M.2
  • 5
    • 55549135706 scopus 로고    scopus 로고
    • A knowledge-gradient policy for sequential information collection
    • Frazier, P., Powell, W. B., and Dayanik, S. A knowledge-gradient policy for sequential information collection. SIAM J. Control Optim., 47(5): 2410-2439, 2008.
    • (2008) SIAM J. Control Optim. , vol.47 , Issue.5 , pp. 2410-2439
    • Frazier, P.1    Powell, W.B.2    Dayanik, S.3
  • 7
    • 0030590294 scopus 로고    scopus 로고
    • Bayesian look ahead one-stage sampling allocations for selection of the best population
    • DOI 10.1016/0378-3758(95)00169-7
    • Gupta, S. S. and Miescke, K.J. Bayesian look ahead one stage sampling allocations for selection the largest normal mean. J. of Stat. Planning and Inference, 54(2):229-244, 1996. (Pubitemid 126161097)
    • (1996) Journal of Statistical Planning and Inference , vol.54 , Issue.2 , pp. 229-244
    • Gupta, S.S.1    Miescke, K.J.2
  • 9
    • 84867130103 scopus 로고    scopus 로고
    • Truelabel + confusions: A spectrum of probabilistic models in analyzing multiple ratings
    • Liu, C. and Wang, Y. M. Truelabel + confusions: A spectrum of probabilistic models in analyzing multiple ratings. In ICML, 2012.
    • (2012) ICML
    • Liu, C.1    Wang, Y.M.2
  • 10
    • 84877752474 scopus 로고    scopus 로고
    • Variational inference for crowdsourcing
    • Liu, Q., Peng, J., and Ihler, A. Variational inference for crowdsourcing. In NIPS, 2012.
    • (2012) NIPS
    • Liu, Q.1    Peng, J.2    Ihler, A.3
  • 11
    • 79955755016 scopus 로고    scopus 로고
    • Computing a classic index for finite-horizon bandits
    • Nino-Mora, J. Computing a classic index for finite-horizon bandits. INFORMS Journal on Computing, 23(2):254-267, 2011.
    • (2011) INFORMS Journal on Computing , vol.23 , Issue.2 , pp. 254-267
    • Nino-Mora, J.1
  • 12
    • 80055026812 scopus 로고    scopus 로고
    • Noisy generalized binary search
    • Nowak, R. D. Noisy generalized binary search. In NIPS, 2009.
    • (2009) NIPS
    • Nowak, R.D.1
  • 18
    • 0036076694 scopus 로고    scopus 로고
    • Conditional value-at-risk for general loss distributions
    • Rockafellar, R. T. and Uryasev, S. Conditional value-at-risk for general loss distributions. J. of Banking and Finance, 26:1443-1471, 2002.
    • (2002) J. of Banking and Finance , vol.26 , pp. 1443-1471
    • Rockafellar, R.T.1    Uryasev, S.2
  • 20
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and fast - But is it good? Evaluating nonexpert annotations for natural language tasks
    • Snow, R., Connor, B. O., Jurafsky, D., and Ng., A. Y. Cheap and fast - but is it good? evaluating nonexpert annotations for natural language tasks. In EMNLP, 2008.
    • (2008) EMNLP
    • Snow, R.1    Connor, B.O.2    Jurafsky, D.3    Ng, A.Y.4
  • 22
    • 77951951247 scopus 로고    scopus 로고
    • Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
    • Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., and Movellan, J. R. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In NIPS, 2009.
    • (2009) NIPS
    • Whitehill, J.1    Ruvolo, P.2    Wu, T.3    Bergsma, J.4    Movellan, J.R.5
  • 25
    • 84881239793 scopus 로고    scopus 로고
    • Learning from the wisdom of crowds by minimax conditional entropy
    • Zhou, D., Basu, S., Mao, Y., and Platt, J. Learning from the wisdom of crowds by minimax conditional entropy. In NIPS, 2012.
    • (2012) NIPS
    • Zhou, D.1    Basu, S.2    Mao, Y.3    Platt, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.