-
1
-
-
84867117736
-
How to grade a test without knowing the answers - A Bayesian graphical model for adaptive crowdsourcing and aptitude testing
-
Bachrach, Y., Minka, T., Guiver, J., and Graepel, T. How to grade a test without knowing the answers - a Bayesian graphical model for adaptive crowdsourcing and aptitude testing, In ICML, 2012.
-
(2012)
ICML
-
-
Bachrach, Y.1
Minka, T.2
Guiver, J.3
Graepel, T.4
-
3
-
-
0003102944
-
Maximum likelihood estimation of observer error-rates using the em algorithm
-
Dawid, A. P. and Skene, A. M. Maximum likelihood estimation of observer error-rates using the em algorithm. JRSS-C, 28:20-28, 1979.
-
(1979)
JRSS-C
, vol.28
, pp. 20-28
-
-
Dawid, A.P.1
Skene, A.M.2
-
4
-
-
84897473523
-
-
Technical report, MIT
-
Ertekin, S., Hirsh, H., and Rudin, C. Wisely using a budget for crowdsourcing. Technical report, MIT, 2012.
-
(2012)
Wisely Using a Budget for Crowdsourcing
-
-
Ertekin, S.1
Hirsh, H.2
Rudin, C.3
-
5
-
-
55549135706
-
A knowledge-gradient policy for sequential information collection
-
Frazier, P., Powell, W. B., and Dayanik, S. A knowledge-gradient policy for sequential information collection. SIAM J. Control Optim., 47(5): 2410-2439, 2008.
-
(2008)
SIAM J. Control Optim.
, vol.47
, Issue.5
, pp. 2410-2439
-
-
Frazier, P.1
Powell, W.B.2
Dayanik, S.3
-
7
-
-
0030590294
-
Bayesian look ahead one-stage sampling allocations for selection of the best population
-
DOI 10.1016/0378-3758(95)00169-7
-
Gupta, S. S. and Miescke, K.J. Bayesian look ahead one stage sampling allocations for selection the largest normal mean. J. of Stat. Planning and Inference, 54(2):229-244, 1996. (Pubitemid 126161097)
-
(1996)
Journal of Statistical Planning and Inference
, vol.54
, Issue.2
, pp. 229-244
-
-
Gupta, S.S.1
Miescke, K.J.2
-
8
-
-
84897539605
-
-
arXiv:1110.3564v3, 11
-
Karger, D. R., Oh, S., and Shah, D. Budget-optimal task allocation for reliable crowdsourcing systems. arXiv:1110.3564v3, 11 2012.
-
(2012)
Budget-optimal Task Allocation for Reliable Crowdsourcing Systems
-
-
Karger, D.R.1
Oh, S.2
Shah, D.3
-
9
-
-
84867130103
-
Truelabel + confusions: A spectrum of probabilistic models in analyzing multiple ratings
-
Liu, C. and Wang, Y. M. Truelabel + confusions: A spectrum of probabilistic models in analyzing multiple ratings. In ICML, 2012.
-
(2012)
ICML
-
-
Liu, C.1
Wang, Y.M.2
-
10
-
-
84877752474
-
Variational inference for crowdsourcing
-
Liu, Q., Peng, J., and Ihler, A. Variational inference for crowdsourcing. In NIPS, 2012.
-
(2012)
NIPS
-
-
Liu, Q.1
Peng, J.2
Ihler, A.3
-
11
-
-
79955755016
-
Computing a classic index for finite-horizon bandits
-
Nino-Mora, J. Computing a classic index for finite-horizon bandits. INFORMS Journal on Computing, 23(2):254-267, 2011.
-
(2011)
INFORMS Journal on Computing
, vol.23
, Issue.2
, pp. 254-267
-
-
Nino-Mora, J.1
-
12
-
-
80055026812
-
Noisy generalized binary search
-
Nowak, R. D. Noisy generalized binary search. In NIPS, 2009.
-
(2009)
NIPS
-
-
Nowak, R.D.1
-
13
-
-
84909645389
-
Adaptive polling for information aggregation
-
Pfeiffer, T., Gao, X. A., Mao, A., Chen, Y., and Rand, D. G. Adaptive polling for information aggregation. In AAAI, 2012.
-
(2012)
AAAI
-
-
Pfeiffer, T.1
Gao, X.A.2
Mao, A.3
Chen, Y.4
Rand, D.G.5
-
16
-
-
77951954464
-
Learning from crowds
-
Raykar, V. C., Yu, S., Zhao, L. H., Valadez, G. H, Florin, C., Bogoni, L., and Moy, L. Learning from crowds. JMLR, 11:1297-1322, 2010.
-
(2010)
JMLR
, vol.11
, pp. 1297-1322
-
-
Raykar, V.C.1
Yu, S.2
Zhao, L.H.3
Valadez, G.H.4
Florin, C.5
Bogoni, L.6
Moy, L.7
-
18
-
-
0036076694
-
Conditional value-at-risk for general loss distributions
-
Rockafellar, R. T. and Uryasev, S. Conditional value-at-risk for general loss distributions. J. of Banking and Finance, 26:1443-1471, 2002.
-
(2002)
J. of Banking and Finance
, vol.26
, pp. 1443-1471
-
-
Rockafellar, R.T.1
Uryasev, S.2
-
20
-
-
80053360508
-
Cheap and fast - But is it good? Evaluating nonexpert annotations for natural language tasks
-
Snow, R., Connor, B. O., Jurafsky, D., and Ng., A. Y. Cheap and fast - but is it good? evaluating nonexpert annotations for natural language tasks. In EMNLP, 2008.
-
(2008)
EMNLP
-
-
Snow, R.1
Connor, B.O.2
Jurafsky, D.3
Ng, A.Y.4
-
21
-
-
85162055266
-
The multidimensional wisdom of crowds
-
Welinder, P., Branson, S., Belongie, S., and Perona, P. The multidimensional wisdom of crowds. In NIPS, 2010.
-
(2010)
NIPS
-
-
Welinder, P.1
Branson, S.2
Belongie, S.3
Perona, P.4
-
22
-
-
77951951247
-
Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
-
Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., and Movellan, J. R. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In NIPS, 2009.
-
(2009)
NIPS
-
-
Whitehill, J.1
Ruvolo, P.2
Wu, T.3
Bergsma, J.4
Movellan, J.R.5
-
24
-
-
80053455236
-
Active learning from crowds
-
Yan, Y., Rosales, R., Fung, G., and Dy, J. Active learning from crowds. In ICML, 2011.
-
(2011)
ICML
-
-
Yan, Y.1
Rosales, R.2
Fung, G.3
Dy, J.4
-
25
-
-
84881239793
-
Learning from the wisdom of crowds by minimax conditional entropy
-
Zhou, D., Basu, S., Mao, Y., and Platt, J. Learning from the wisdom of crowds by minimax conditional entropy. In NIPS, 2012.
-
(2012)
NIPS
-
-
Zhou, D.1
Basu, S.2
Mao, Y.3
Platt, J.4
|