메뉴 건너뛰기




Volumn 2, Issue , 2014, Pages 1446-1469

Optimal PAC multiple arm identification with applications to crowdsourcing

Author keywords

[No Author keywords available]

Indexed keywords

AGGREGATES; ALGORITHMS; ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; STOCHASTIC SYSTEMS;

EID: 84919921416     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (41)

References (24)
  • 5
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • Auer, P, Cesa-Bianchi, N, and Fischer, P. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47:235-256, 2002b.
    • (2002) Machine Learning , vol.47 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 7
    • 84874045238 scopus 로고    scopus 로고
    • Regret analysis of stochastic and nonstochastic multi-armed bandit problems
    • Bubeck, S and Cesa-Bianchi, N. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1): 1-122, 2012.
    • (2012) Foundations and Trends in Machine Learning , vol.5 , Issue.1 , pp. 1-122
    • Bubeck, S.1    Cesa-Bianchi, N.2
  • 12
    • 33745295134 scopus 로고    scopus 로고
    • Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems
    • Even-Dar, E, Mannor, S, and Mansour, Y. Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal of machine learning research, 7:1079-1105, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1079-1105
    • Even-Dar, E.1    Mannor, S.2    Mansour, Y.3
  • 13
    • 84897504552 scopus 로고    scopus 로고
    • Adaptive task assignment for crowdsourced classification
    • Ho, C.-I, Jabbari, S, and Vaughan, J. W. Adaptive task assignment for crowdsourced classification. In ICML, 2013.
    • (2013) ICML
    • Ho, C.-I.1    Jabbari, S.2    Vaughan, J.W.3
  • 18
    • 0001640560 scopus 로고
    • A procedure for selecting a subset of size m containing the I best of k independent normal populations, with applications to simulation
    • Koenig, L. W and Law, A. M. A procedure for selecting a subset of size m containing the I best of k independent normal populations, with applications to simulation. Communications in statistics. Simulation and computation, 14:719-734, 1985.
    • (1985) Communications in Statistics. Simulation and Computation , vol.14 , pp. 719-734
    • Koenig, L.W.1    Law, A.M.2
  • 19
    • 30044441333 scopus 로고    scopus 로고
    • The sample complexity of exploration in the multi-armed bandit problem
    • Mannor, S and Tsitsiklis, J. N. The sample complexity of exploration in the multi-armed bandit problem. Journal of Machine Learning Research, 5:623-648, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 623-648
    • Mannor, S.1    Tsitsiklis, J.N.2
  • 22
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and fast - But is it good? Evaluating non-expert annotations for natural language tasks
    • Snow, R, Connor, B. O, Jurafsky, D, and Ng., A. Y. Cheap and fast - but is it good? evaluating non-expert annotations for natural language tasks. In EMNLP, 2008.
    • (2008) EMNLP
    • Snow, R.1    Connor, B.O.2    Jurafsky, D.3    Ng., A.Y.4
  • 23
    • 0001395850 scopus 로고
    • On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
    • Thompson, W. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 25:285-294, 1933.
    • (1933) Biometrika , vol.25 , pp. 285-294
    • Thompson, W.1
  • 24
    • 84881239793 scopus 로고    scopus 로고
    • Learning from the wisdom of crowds by minimax conditional entropy
    • Zhou, D, Basu, S, Mao, Y, and Piatt, J. Learning from the wisdom of crowds by minimax conditional entropy. In NIPS. 2012.
    • (2012) NIPS
    • Zhou, D.1    Basu, S.2    Mao, Y.3    Piatt, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.