메뉴 건너뛰기




Volumn , Issue PART 1, 2013, Pages 151-159

Combinatorial multi-armed bandit: General framework, results and applications

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; LEARNING SYSTEMS; MARKETING; OPTIMIZATION;

EID: 84897515317     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (695)

References (25)
  • 1
    • 0023453059 scopus 로고
    • Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays Part I: I.I.D. Rewards; Part II: Markovian rewards
    • Anantharam, V., Varaiya, P., and Walrand, J. Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays Part I: i.i.d. rewards; Part II: Markovian rewards. IEEE Transactions on Automatic Control, AC-32(11):968-982, 1987a.
    • (1987) IEEE Transactions on Automatic Control , vol.AC-32 , Issue.11 , pp. 968-982
    • Anantharam, V.1    Varaiya, P.2    Walrand, J.3
  • 2
    • 84898079018 scopus 로고    scopus 로고
    • Minimax policies for adversarial and stochastic bandits
    • Audibert, J.-Y., and Bubeck, S. Minimax policies for adversarial and stochastic bandits. In COLT, 2009.
    • (2009) COLT
    • Audibert, J.-Y.1    Bubeck, S.2
  • 3
    • 84954283323 scopus 로고    scopus 로고
    • Minimax policies for combinatorial prediction games
    • Audibert, J.-Y., Bubeck, S., and Lugosi, G. Minimax policies for combinatorial prediction games. In COLT, 2011.
    • (2011) COLT
    • Audibert, J.-Y.1    Bubeck, S.2    Lugosi, G.3
  • 4
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • DOI 10.1023/A:1013689704352, Computational Learning Theory
    • Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2-3):235-256, 2002a. (Pubitemid 34126111)
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 7
    • 84887470752 scopus 로고    scopus 로고
    • Towards Minimax Policies for Online Linear Optimization with Bandit Feedback
    • Bubeck, S., Cesa-Bianchi, N., and Kakade, S. M. Towards Minimax Policies for Online Linear Optimization with Bandit Feedback. In COLT, 2012.
    • (2012) COLT
    • Bubeck, S.1    Cesa-Bianchi, N.2    Kakade, S.M.3
  • 8
    • 33847255926 scopus 로고    scopus 로고
    • Dynamic assortment with demand learning for seasonal consumer goods
    • DOI 10.1287/mnsc.1060.0613
    • Caro, F. and Gallien, J. Dynamic assortment with demand learning for seasonal consumer goods. Management Science, 53:276-292, 2007. (Pubitemid 46326180)
    • (2007) Management Science , vol.53 , Issue.2 , pp. 276-292
    • Caro, F.1    Gallien, J.2
  • 10
    • 77953180719 scopus 로고    scopus 로고
    • Learning multiuser channel allocations in cognitive radio networks: A combinatorial multi-armed bandit formulation
    • Gai, Y., Krishnamachari, B., and Jain, R. Learning multiuser channel allocations in cognitive radio networks: A combinatorial multi-armed bandit formulation. In DySPAN, 2010.
    • (2010) DySPAN
    • Gai, Y.1    Krishnamachari, B.2    Jain, R.3
  • 11
    • 84867858040 scopus 로고    scopus 로고
    • Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations
    • Gai, Y., Krishnamachari, B., and Jain, R. Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20, 2012.
    • (2012) IEEE/ACM Transactions on Networking , vol.20
    • Gai, Y.1    Krishnamachari, B.2    Jain, R.3
  • 12
    • 84863920694 scopus 로고    scopus 로고
    • The KL-UCB algorithm for bounded stochastic bandits and beyond
    • Garivier, A. and Cappé, O. The KL-UCB algorithm for bounded stochastic bandits and beyond. In COLT, 2011.
    • (2011) COLT
    • Garivier, A.1    Cappé, O.2
  • 13
    • 80053442097 scopus 로고    scopus 로고
    • Online submodular minimization
    • Hazan, E. and Kale, S. Online submodular minimization. In NIPS, 2009.
    • (2009) NIPS
    • Hazan, E.1    Kale, S.2
  • 14
    • 80053454111 scopus 로고    scopus 로고
    • Playing games with approximation algorithms
    • Kakade, S. M., Kalai, A. T., and Ligett, K. Playing games with approximation algorithms. SIAM Journal on Computing, 39(3):1088-1106, 2009.
    • (2009) SIAM Journal on Computing , vol.39 , Issue.3 , pp. 1088-1106
    • Kakade, S.M.1    Kalai, A.T.2    Ligett, K.3
  • 15
    • 33747172362 scopus 로고    scopus 로고
    • Maximizing the spread of influence through a social network
    • Kempe, D., Kleinberg, J. M., and Tardos, E. Maximizing the spread of influence through a social network. In KDD, 2003.
    • (2003) KDD
    • Kempe, D.1    Kleinberg, J.M.2    Tardos, E.3
  • 16
    • 0002899547 scopus 로고
    • Asymptotically efficient adaptive allocation rules
    • Lai, T. L. and Robbins, H. Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6:4-22, 1985.
    • (1985) Advances in Applied Mathematics , vol.6 , pp. 4-22
    • Lai, T.L.1    Robbins, H.2
  • 17
    • 80051636024 scopus 로고    scopus 로고
    • Logarithmic weak regret of non-bayesian restless multi-armed bandit
    • Liu, H., Liu, K., and Zhao, Q. Logarithmic weak regret of non-bayesian restless multi-armed bandit. In ICASSP, 2011.
    • (2011) ICASSP
    • Liu, H.1    Liu, K.2    Zhao, Q.3
  • 19
    • 85162303757 scopus 로고    scopus 로고
    • From Bandits to Experts: On the Value of Side-Observations
    • Mannor, S., and Shamir, O. From Bandits to Experts: On the Value of Side-Observations. In NIPS, 2011.
    • (2011) NIPS
    • Mannor, S.1    Shamir, O.2
  • 20
    • 0000095809 scopus 로고
    • An analysis of the approximations for maximizing submodular set functions
    • Nemhauser, G., Wolsey, L., and Fisher, M. An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 14:265-294, 1978.
    • (1978) Mathematical Programming , vol.14 , pp. 265-294
    • Nemhauser, G.1    Wolsey, L.2    Fisher, M.3
  • 21
    • 56449088596 scopus 로고    scopus 로고
    • Learning diverse rankings with multi-armed bandits
    • Radlinski, F., Kleinberg, R., and Joachims, T. Learning diverse rankings with multi-armed bandits. In ICML, 2008.
    • (2008) ICML
    • Radlinski, F.1    Kleinberg, R.2    Joachims, T.3
  • 23
    • 85047019092 scopus 로고    scopus 로고
    • An online algorithm for maximizing submodular functions
    • Streeter, M. and Golovin, D. An online algorithm for maximizing submodular functions. In NIPS, 2008.
    • (2008) NIPS
    • Streeter, M.1    Golovin, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.