-
1
-
-
84902095946
-
Fast algorithms for maximizing sub modular functions
-
A. Badanidiyuru and J. Vondrak. Fast algorithms for maximizing sub modular functions. In SODA, 2014.
-
(2014)
SODA
-
-
Badanidiyuru, A.1
Vondrak, J.2
-
2
-
-
77952590681
-
On the feature selection criterion based on an approximation of multidimensional mutual information
-
K. S. Balagani and V. V. Phoha. On the feature selection criterion based on an approximation of multidimensional mutual information. PAMI, IEEE Transactions, 2010.
-
(2010)
PAMI, IEEE Transactions
-
-
Balagani, K.S.1
Phoha, V.V.2
-
4
-
-
51949090223
-
In defense of nearest- neighbor based image classification
-
O. Boiman, E. Shechtman, and M. Irani. In defense of nearest- neighbor based image classification. In CVPR, 2008.
-
(2008)
CVPR
-
-
Boiman, O.1
Shechtman, E.2
Irani, M.3
-
6
-
-
48749136131
-
Sub modular set functions, ma- Troids and the greedy algorithm: Tight worst-case bounds and some generalizations of the rado-edmonds theorem
-
M. Conforti and G. Cornuejols. Sub modular set functions, ma- Troids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discrete Applied Mathematics, 1984.
-
(1984)
Discrete Applied Mathematics
-
-
Conforti, M.1
Cornuejols, G.2
-
7
-
-
0032108328
-
A threshold of in n for approximating set cover
-
U. Feige. A threshold of In n for approximating set cover. JACM, 1998.
-
(1998)
JACM
-
-
Feige, U.1
-
9
-
-
79951736547
-
A sub modular function minimization algorithm based on the minimum-norm base
-
S. Fujishige and S. Isotani. A sub modular function minimization algorithm based on the minimum-norm base. Pacific Journal of Optimization, 7:3-17, 2011.
-
(2011)
Pacific Journal of Optimization
, vol.7
, pp. 3-17
-
-
Fujishige, S.1
Isotani, S.2
-
10
-
-
84886063323
-
Algorithms for approximate minimization of the difference between sub modular functions, with applications
-
R. Iyer and J. Bilmes. Algorithms for approximate minimization of the difference between sub modular functions, with applications. In UAI, 2012.
-
(2012)
UAI
-
-
Iyer, R.1
Bilmes, J.2
-
11
-
-
84898975039
-
Sub modular optimization with sub modular cover and sub modular knapsack constraints
-
R. Iyer and J. Bilmes. Sub modular optimization with sub modular cover and sub modular knapsack constraints. In NIPS, 2013.
-
(2013)
NIPS
-
-
Iyer, R.1
Bilmes, J.2
-
12
-
-
84898994015
-
Curvature and optimal algorithms for learning and minimizing sub modular functions
-
R. Iyer, S. Jegelka, and J. Bilmes. Curvature and Optimal Algorithms for Learning and Minimizing Sub modular Functions. NIPS, 2013a.
-
(2013)
NIPS
-
-
Iyer, R.1
Jegelka, S.2
Bilmes, J.3
-
13
-
-
84897505165
-
Fast semi differential based sub modular function optimization
-
R. Iyer, S. Jegelka, and J. Bilmes. Fast semi differential based sub modular function optimization. In ICML, 2013b.
-
(2013)
ICML
-
-
Iyer, R.1
Jegelka, S.2
Bilmes, J.3
-
14
-
-
33747172362
-
Maximizing the spread of influence through a social network
-
D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In KDD, 2003.
-
(2003)
KDD
-
-
Kempe, D.1
Kleinberg, J.2
Tardos, E.3
-
15
-
-
33745198184
-
Svitch board 1: Small vocabulary tasks from switchboard I
-
Lisbon, Portugal, September
-
S. King, C. Battels, and J. Bilmes. SVitch board 1: Small vocabulary tasks from switchboard 1. In European Conf. on Speech Communication and Technology (Euro speech), Lisbon, Portugal, September 2005.
-
(2005)
European Conf. on Speech Communication and Technology (Euro Speech)
-
-
King, S.1
Battels, C.2
Bilmes, J.3
-
16
-
-
0742286180
-
What energy functions can be minimized via graph cuts?
-
V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? IEEE TPAM1. 26(2):147-159, 2004.
-
(2004)
IEEE TPAM1
, vol.26
, Issue.2
, pp. 147-159
-
-
Kolmogorov, V.1
Zabih, R.2
-
17
-
-
67650691734
-
Near-optimal non myopic value of information in graphical models
-
A. Krause and C. Guestrin. Near-optimal non myopic value of information in graphical models. In UAI, 2005a.
-
(2005)
UAI
-
-
Krause, A.1
Guestrin, C.2
-
19
-
-
41549146576
-
Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
-
A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. JMLR, 9:235-284, 2008.
-
(2008)
JMLR
, vol.9
, pp. 235-284
-
-
Krause, A.1
Singh, A.2
Guestrin, C.3
-
22
-
-
36849083014
-
Cost-effective outbreak detection in networks
-
J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In SIGKDD, 2007.
-
(2007)
SIGKDD
-
-
Leskovec, J.1
Krause, A.2
Guestrin, C.3
Faloutsos, C.4
Van Briesen, J.5
Glance, N.6
-
23
-
-
70450220373
-
How to select a good training-data subset for transcription: Sub modular active selection for sequences
-
H. Lin and I. Bilmes. How to select a good training-data subset for transcription: Sub modular active selection for sequences. In Inter speech, 2009.
-
(2009)
Inter Speech
-
-
Lin, H.1
Bilmes, I.2
-
24
-
-
84859070008
-
A class of sub modular functions for document summarization
-
H. Lin and J. Bilmes. A class of sub modular functions for document summarization. In ACL, 2011.
-
(2011)
ACL
-
-
Lin, H.1
Bilmes, J.2
-
25
-
-
84886074716
-
Learning mixtures of sub modular shells with application to document summarization
-
H. Lin and J. Bilmes. Learning mixtures of sub modular shells with application to document summarization. In UAI, 2012.
-
(2012)
UAI
-
-
Lin, H.1
Bilmes, J.2
-
26
-
-
84890455727
-
Sub modular feature selection for high-dimensional acoustic score spaces
-
Y. Liu, K. Wei, K. Kirchhoff, Y. Song, and J. Bilmes. Sub modular feature selection for high-dimensional acoustic score spaces. In ICASSP, 2013.
-
(2013)
ICASSP
-
-
Liu, Y.1
Wei, K.2
Kirchhoff, K.3
Song, Y.4
Bilmes, J.5
-
27
-
-
77951148076
-
Accelerated greedy algorithms for maximizing sub- modular set functions
-
M. Minoux. Accelerated greedy algorithms for maximizing sub- modular set functions. Optimization Techniques, 1978.
-
(1978)
Optimization Techniques
-
-
Minoux, M.1
-
28
-
-
84898931932
-
Distributed sub modular maximization: Identifying representative elements in massive data
-
B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause. Distributed sub modular maximization: Identifying representative elements in massive data. In NIPS, 2013.
-
(2013)
NIPS
-
-
Mirzasoleiman, B.1
Karbasi, A.2
Sarkar, R.3
Krause, A.4
-
29
-
-
0010814278
-
Best algorithms for approximating the maximum of a sub modular set function
-
G. Nemhauser and L. Wolsey. Best algorithms for approximating the maximum of a sub modular set function. Mathematics of Operations Research, 3(3): 177-188, 1978.
-
(1978)
Mathematics of Operations Research
, vol.3
, Issue.3
, pp. 177-188
-
-
Nemhauser, G.1
Wolsey, L.2
-
30
-
-
0000095809
-
An analysis of approximations for maximizing sub modular set functions-I
-
Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing sub modular set functions-i. Mathematical Programming, (1), 1978.
-
(1978)
Mathematical Programming
, Issue.1
-
-
Nemhauser, L.W.1
Fisher, M.2
-
31
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. PAMI, IEEE Transactions, 2005.
-
(2005)
PAMI, IEEE Transactions
-
-
Peng, F.L.1
Ding, C.2
-
32
-
-
84898408376
-
Object mining for large video data
-
R. Shah, R. Iyer, and S. Chaudhuri. Object mining for large video data. Proc. BMVC, 22(10):761-767, 2011.
-
(2011)
Proc. BMVC
, vol.22
, Issue.10
, pp. 761-767
-
-
Shah, R.1
Iyer, R.2
Chaudhuri, S.3
-
33
-
-
84858037291
-
How to win friends and influence people, truthfully: Influence maximization mechanisms for social networks
-
ACM
-
Y. Singer. How to win friends and influence people, truthfully: Influence maximization mechanisms for social networks. In WSDM. ACM, 2012.
-
(2012)
WSDM
-
-
Singer, Y.1
-
34
-
-
85162051091
-
Efficient minimization of decomposable sub modular functions
-
P. Stobbe and A. Krause. Efficient minimization of decomposable sub modular functions. In NIPS, 2010.
-
(2010)
NIPS
-
-
Stobbe, P.1
Krause, A.2
-
35
-
-
0142029543
-
A note on maximizing a sub modular set function subject to a knapsack constraint
-
M. Sviridenko. A note on maximizing a sub modular set function subject to a knapsack constraint. Operations Research Letters, 32(1):41-43, 2004.
-
(2004)
Operations Research Letters
, vol.32
, Issue.1
, pp. 41-43
-
-
Sviridenko, M.1
-
36
-
-
84926184611
-
Using document summarization techniques for speech data subset selection
-
K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes. Using document summarization techniques for speech data subset selection. In NAACUHLT, 2013.
-
(2013)
NAACUHLT
-
-
Wei, K.1
Liu, Y.2
Kirchhoff, K.3
Bilmes, J.4
-
37
-
-
84905251799
-
Sub modular subset selection for large-scale speech training data
-
K. Wei, Y. Liu, K. Kirchhoff, C. Battels, and J. Bilmes. Sub modular subset selection for large-scale speech training data. In ICASSP, 2014a.
-
(2014)
ICASSP
-
-
Wei, K.1
Liu, Y.2
Kirchhoff, K.3
Battels, C.4
Bilmes, J.5
-
38
-
-
84905244750
-
Unsupervised sub- modular subset selection for speech data
-
K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes. Unsupervised sub- modular subset selection for speech data. In ICASSP, 2014b.
-
(2014)
ICASSP
-
-
Wei, K.1
Liu, Y.2
Kirchhoff, K.3
Bilmes, J.4
-
39
-
-
51249182537
-
An analysis of the greedy algorithm for the sub- modular set covering problem
-
L. A. Wolsey. An analysis of the greedy algorithm for the sub- modular set covering problem. Combinatorica, 2(4):385-393, 1982.
-
(1982)
Combinatorica
, vol.2
, Issue.4
, pp. 385-393
-
-
Wolsey, L.A.1
-
40
-
-
44849132070
-
Data selection for speech recognition
-
Y. Wu, R. Zhang, and A. Rudnicky. Data selection for speech recognition. In ASRU, 2007.
-
(2007)
ASRU
-
-
Wu, Y.1
Zhang, R.2
Rudnicky, A.3
|