메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Submodular optimization with submodular cover and submodular knapsack constraints

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS;

EID: 84898975039     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (260)

References (29)
  • 2
    • 48749136131 scopus 로고
    • Submodular set functions, matroids and the greedy algorithm: Tight worstcase bounds and some generalizations of the Rado-Edmonds theorem
    • M. Conforti and G. Cornuejols. Submodular set functions, matroids and the greedy algorithm: tight worstcase bounds and some generalizations of the Rado-Edmonds theorem. Discrete Applied Mathematics, 7(3):251-274, 1984.
    • (1984) Discrete Applied Mathematics , vol.7 , Issue.3 , pp. 251-274
    • Conforti, M.1    Cornuejols, G.2
  • 3
    • 0032108328 scopus 로고    scopus 로고
    • A threshold of ln n for approximating set cover
    • U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 1998.
    • (1998) Journal of the ACM (JACM
    • Feige, U.1
  • 6
    • 70349108343 scopus 로고    scopus 로고
    • Approximating submodular functions everywhere
    • M. Goemans, N. Harvey, S. Iwata, and V. Mirrokni. Approximating submodular functions everywhere. In SODA, pages 535-544, 2009.
    • (2009) SODA , pp. 535-544
    • Goemans, M.1    Harvey, N.2    Iwata, S.3    Mirrokni, V.4
  • 7
    • 77956550109 scopus 로고    scopus 로고
    • Interactive submodular set cover
    • A. Guillory and J. Bilmes. Interactive submodular set cover. In ICML, 2010.
    • (2010) ICML
    • Guillory, A.1    Bilmes, J.2
  • 8
    • 80053436626 scopus 로고    scopus 로고
    • Simultaneous learning and covering with adversarial noise
    • A. Guillory and J. Bilmes. Simultaneous learning and covering with adversarial noise. In ICML, 2011.
    • (2011) ICML
    • Guillory, A.1    Bilmes, J.2
  • 9
    • 84886063323 scopus 로고    scopus 로고
    • Algorithms for approximate minimization of the difference between submodular functions, with applications
    • R. Iyer and J. Bilmes. Algorithms for approximate minimization of the difference between submodular functions, with applications. In UAI, 2012.
    • (2012) UAI
    • Iyer, R.1    Bilmes, J.2
  • 10
    • 84877770723 scopus 로고    scopus 로고
    • The submodular bregman and lovász-bregman divergences with applications
    • R. Iyer and J. Bilmes. The submodular Bregman and Lovász-Bregman divergences with applications. In NIPS, 2012.
    • (2012) NIPS
    • Iyer, R.1    Bilmes, J.2
  • 12
    • 84898994015 scopus 로고    scopus 로고
    • Curvature and optimal algorithms for learning and minimizing submodular functions
    • R. Iyer, S. Jegelka, and J. Bilmes. Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions.In NIPS, 2013.
    • (2013) NIPS
    • Iyer, R.1    Jegelka, S.2    Bilmes, J.3
  • 13
    • 84897505165 scopus 로고    scopus 로고
    • Fast semidifferential based submodular function optimization
    • R. Iyer, S. Jegelka, and J. Bilmes. Fast semidifferential based submodular function optimization. In ICML, 2013.
    • (2013) ICML
    • Iyer, R.1    Jegelka, S.2    Bilmes, J.3
  • 14
    • 80052906787 scopus 로고    scopus 로고
    • Submodularity beyond submodular energies: Coupling edges in graph cuts
    • S. Jegelka and J. A. Bilmes. Submodularity beyond submodular energies: coupling edges in graph cuts. In CVPR, 2011.
    • (2011) CVPR
    • Jegelka, S.1    Bilmes, J.A.2
  • 15
    • 85162400746 scopus 로고    scopus 로고
    • Prismatic algorithm for discrete dc programming problems
    • Y. Kawahara and T. Washio. Prismatic algorithm for discrete dc programming problems. In NIPS, 2011.
    • (2011) NIPS
    • Kawahara, Y.1    Washio, T.2
  • 17
    • 31844452164 scopus 로고    scopus 로고
    • A note on the budgeted maximization on submodular functions
    • Carnegie Mellon University
    • A. Krause and C. Guestrin. A note on the budgeted maximization on submodular functions. Technical Report CMU-CALD-05-103, Carnegie Mellon University, 2005.
    • (2005) Technical Report CMU-CALD-05-103
    • Krause, A.1    Guestrin, C.2
  • 19
    • 41549146576 scopus 로고    scopus 로고
    • Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
    • A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. JMLR, 9:235-284, 2008.
    • (2008) JMLR , vol.9 , pp. 235-284
    • Krause, A.1    Singh, A.2    Guestrin, C.3
  • 20
    • 70450220373 scopus 로고    scopus 로고
    • How to select a good training-data subset for transcription: Submodular active selection for sequences
    • H. Lin and J. Bilmes. How to select a good training-data subset for transcription: Submodular active selection for sequences. In Interspeech, 2009.
    • (2009) Interspeech
    • Lin, H.1    Bilmes, J.2
  • 21
    • 84863338141 scopus 로고    scopus 로고
    • Multi-document summarization via budgeted maximization of submodular functions
    • H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization of submodular functions. In NAACL, 2010.
    • (2010) NAACL
    • Lin, H.1    Bilmes, J.2
  • 23
    • 84865756305 scopus 로고    scopus 로고
    • Optimal selection of limited vocabulary speech corpora
    • H. Lin and J. Bilmes. Optimal selection of limited vocabulary speech corpora. In Interspeech, 2011.
    • (2011) Interspeech
    • Lin, H.1    Bilmes, J.2
  • 24
    • 84859981825 scopus 로고    scopus 로고
    • Intelligent selection of language model training data
    • Association for Computational Linguistics
    • R. C. Moore and W. Lewis. Intelligent selection of language model training data. In Proceedings of the ACL 2010 Conference Short Papers, pages 220-224. Association for Computational Linguistics, 2010.
    • (2010) Proceedings of the ACL 2010 Conference Short Papers , pp. 220-224
    • Moore, R.C.1    Lewis, W.2
  • 25
    • 80053291910 scopus 로고    scopus 로고
    • A submodular-supermodular procedure with applications to discriminative structure learning
    • M. Narasimhan and J. Bilmes. A submodular-supermodular procedure with applications to discriminative structure learning. In UAI, 2005.
    • (2005) UAI
    • Narasimhan, M.1    Bilmes, J.2
  • 27
    • 24944584599 scopus 로고    scopus 로고
    • Efficient computation of gapped substring kernels on large alphabets
    • J. Rousu and J. Shawe-Taylor. Efficient computation of gapped substring kernels on large alphabets. Journal of Machine Learning Research, 6(2):1323, 2006.
    • (2006) Journal of Machine Learning Research , vol.6 , Issue.2 , pp. 1323
    • Rousu, J.1    Shawe-Taylor, J.2
  • 28
    • 0142029543 scopus 로고    scopus 로고
    • A note on maximizing a submodular set function subject to a knapsack constraint
    • M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint. Operations Research Letters, 32(1):41-43, 2004.
    • (2004) Operations Research Letters , vol.32 , Issue.1 , pp. 41-43
    • Sviridenko, M.1
  • 29
    • 51249182537 scopus 로고
    • An analysis of the greedy algorithm for the submodular set covering problem
    • L. A.Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica, 2(4):385-393, 1982.
    • (1982) Combinatorica , vol.2 , Issue.4 , pp. 385-393
    • Wolsey, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.