메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages 3717-3735

Nonnegative sparse PCA with provable guarantees

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; EIGENVALUES AND EIGENFUNCTIONS; LEARNING SYSTEMS; MATRIX ALGEBRA;

EID: 84919822057     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (23)

References (25)
  • 1
    • 80054949794 scopus 로고    scopus 로고
    • Sparse nonnegative generalized pea with applications to metabolomics
    • Allen, Genevera I. and Maletič-Savatič, Mirjana. Sparse nonnegative generalized pea with applications to metabolomics. Bioinformatics, 2011.
    • (2011) Bioinformatics
    • Allen, G.I.1    Maletič-Savatič, M.2
  • 5
    • 57849134767 scopus 로고    scopus 로고
    • Sparse factorizations of gene expression guided by binding data
    • Badea, Liviu and Tilivea, Doina. Sparse factorizations of gene expression guided by binding data. In Pacific Symposium on Biocomputing, 2005.
    • (2005) Pacific Symposium on Biocomputing
    • Badea, L.1    Tilivea, D.2
  • 6
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse pea using semidefinite programming
    • d'Aspremont, A., El Ghaoui, L., Jordan, M.I., and Lanckriet, G.R.G. A direct formulation for sparse pea using semidefinite programming. SIAM review, 49(3):434-448, 2007a.
    • (2007) SIAM Review , vol.49 , Issue.3 , pp. 434-448
    • D'Aspremont, A.1    El Ghaoui, L.2    Jordan, M.I.3    Lanckriet, G.R.G.4
  • 8
    • 48849086355 scopus 로고    scopus 로고
    • Optimal solutions for sparse principal component analysis
    • Jun
    • d'Aspremont, Alexandre, Bach, Francis, and Ghaoui, Laurent El. Optimal solutions for sparse principal component analysis. J. Mach. Learn. Res., 9:1269-1294, Jun 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1269-1294
    • D'Aspremont, A.1    Bach, F.2    Ghaoui, L.E.3
  • 9
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparse-ness constraints
    • Hoyer, Patrik O. Non-negative matrix factorization with sparse-ness constraints. Journal of Machine Learning Research, 5: 1457-1469, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 10
    • 0002226018 scopus 로고
    • Rotation of principal components: Choice of normalization constraints
    • Jolliffe, IT. Rotation of principal components: choice of normalization constraints. Journal of Applied Statistics, 22(l).29-35, 1995.
    • (1995) Journal of Applied Statistics , vol.22 , Issue.1 , pp. 29-35
    • Jolliffe, I.T.1
  • 12
    • 77953251073 scopus 로고    scopus 로고
    • Efficient computation of the binary vector that maximizes a rank-deficient quadratic form
    • Karystinos, G.N. and Liavas, A.P. Efficient computation of the binary vector that maximizes a rank-deficient quadratic form. Information Theory, IEEE Transactions on, 56(7):3581-3593, 2010.
    • (2010) Information Theory, IEEE Transactions on , vol.56 , Issue.7 , pp. 3581-3593
    • Karystinos, G.N.1    Liavas, A.P.2
  • 13
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • Kim, Hyunsoo and Park, Haesun. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23(12): 1495-1502, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 14
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, Daniel D and Seung, H Sebastian. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755): 788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 15
    • 77949532908 scopus 로고    scopus 로고
    • Deflation methods for sparse pea
    • NIPS '08, Vancouver, Canada
    • Mackey, Lester. Deflation methods for sparse pea. In Advances in Neural Information Processing Systems 21, NIPS '08, pp. 1-8, Vancouver, Canada, Dec 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.21 , pp. 1-8
    • Mackey, L.1
  • 18
    • 0023452095 scopus 로고
    • Some np-complete problems in quadratic and nonlinear programming
    • Murty, Katta G. and Kabadi, Santosh N. Some np-complete problems in quadratic and nonlinear programming. Mathematical Programming, 39(2): 117-129, 1987.
    • (1987) Mathematical Programming , vol.39 , Issue.2 , pp. 117-129
    • Murty, K.G.1    Kabadi, S.N.2
  • 22
    • 0003651781 scopus 로고    scopus 로고
    • PhD thesis, PhD thesis, MIT, Artificial Intelligence Laboratory and Center for Biological and Computational Learning, Cambridge, MA
    • Sung, Kah-Kay. Learning and example selection for object and pattern recognition. PhD thesis, PhD thesis, MIT, Artificial Intelligence Laboratory and Center for Biological and Computational Learning, Cambridge, MA, 1996.
    • (1996) Learning and Example Selection for Object and Pattern Recognition
    • Sung, K.-K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.