메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 111-119

Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; ITERATIVE METHODS; LEARNING SYSTEMS; OPTIMIZATION; REGRESSION ANALYSIS;

EID: 84919796368     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (43)

References (25)
  • 2
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-Thresholding algorithm for linear inverse problems
    • Beck, A. and Teboulle, M. A fast iterative shrinkage-Thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1): 183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 3
  • 5
    • 57249107300 scopus 로고    scopus 로고
    • Smooth optimization with approximate gradient
    • d'Aspremont, Alexandre. Smooth optimization with approximate gradient. SIAM Journal on Optimization, 19(3): 1171-1183, 2008.
    • (2008) SIAM Journal on Optimization , vol.19 , Issue.3 , pp. 1171-1183
    • D'Aspremont, A.1
  • 7
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • Duchi, J. and Singer, Y. Efficient online and batch learning using forward backward splitting. The Journal of Machine Learning Research, 10: 2899-2934, 2009.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 2899-2934
    • Duchi, J.1    Singer, Y.2
  • 9
    • 84871576447 scopus 로고    scopus 로고
    • Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization i: A generic algorithmic framework
    • Ghadimi, Saeed and Lan, Guanghui. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization i: A generic algorithmic framework. SIAM Journal on Optimization, 22(4): 1469-1492, 2012.
    • (2012) SIAM Journal on Optimization , vol.22 , Issue.4 , pp. 1469-1492
    • Ghadimi, S.1    Lan, G.2
  • 10
    • 77956508892 scopus 로고    scopus 로고
    • Accelerated gradient methods for stochastic optimization and online learning
    • Hu, Chonghai, Pan, Weike, and Kwok, James T. Accelerated gradient methods for stochastic optimization and online learning. In Advances in Neural Information Processing Systems, pp. 781-789, 2009.
    • (2009) Advances in Neural Information Processing Systems , pp. 781-789
    • Hu, C.1    Pan, W.2    Kwok, J.T.3
  • 12
    • 84863353464 scopus 로고    scopus 로고
    • Sparse online learning via truncated gradient
    • Langford, J., Li, L., and Zhang, T. Sparse online learning via truncated gradient. In NIPS, pp. 905-912, 2009.
    • (2009) NIPS , pp. 905-912
    • Langford, J.1    Li, L.2    Zhang, T.3
  • 14
    • 84865692149 scopus 로고    scopus 로고
    • Efficiency of coordinate descent methods on huge-scale optimization problems
    • Nesterov, Y. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal on Optimization, 22(2): 341-362, 2012.
    • (2012) SIAM Journal on Optimization , vol.22 , Issue.2 , pp. 341-362
    • Nesterov, Y.1
  • 15
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Nesterov, Yurii. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1): 127-152, 2005.
    • (2005) Mathematical Programming , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 17
    • 84897116612 scopus 로고    scopus 로고
    • Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
    • Richtarik, Peter and Takac, Martin. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Mathematical Programming, pp. 1-38, 2012.
    • (2012) Mathematical Programming , pp. 1-38
    • Richtarik, P.1    Takac, M.2
  • 19
    • 79960131832 scopus 로고    scopus 로고
    • Stochastic methods for 11-regularized loss minimization. 77ie
    • Shalev-Shwartz, S. and Tewari, A. Stochastic methods for 11-regularized loss minimization. 77ie Journal of Machine Learning Research, 12: 1865-1892, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 1865-1892
    • Shalev-Shwartz, S.1    Tewari, A.2
  • 20
    • 70049094634 scopus 로고    scopus 로고
    • Stochastic methods for U regularized loss minimization
    • Shalev-Shwartz, Shai and Tewari, Ambuj. Stochastic methods for U regularized loss minimization. In 1CML, pp. 117, 2009.
    • (2009) 1CML , pp. 117
    • Shalev-Shwartz, S.1    Tewari, A.2
  • 21
    • 84875134236 scopus 로고    scopus 로고
    • Stochastic dual coordinate ascent methods for regularized loss minimization
    • Feb
    • Shalev-Shwartz, Shai and Zhang, Tong. Stochastic dual coordinate ascent methods for regularized loss minimization. Journal of Machine Learning Research, 14: 567-599, Feb 2013.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 567-599
    • Shalev-Shwartz, S.1    Zhang, T.2
  • 23
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal Estimated sub-GrAdient SOlver for SVM
    • Shalev-Shwartz, Shai, Singer, Yoram, and Srebro, Nathan. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. In ICML, pp. 807-814, 2007.
    • (2007) ICML , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 24
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging method for regularized stochastic learning and online optimization
    • Xiao, Lin. Dual averaging method for regularized stochastic learning and online optimization. Journal of Machine Learning Research, 11: 2543-2596, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2543-2596
    • Xiao, L.1
  • 25
    • 0036158505 scopus 로고    scopus 로고
    • On the dual formulation of regularized linear systems
    • Zhang, Tong. On the dual formulation of regularized linear systems. Machine Learning, 46: 91-129, 2002.
    • (2002) Machine Learning , vol.46 , pp. 91-129
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.