메뉴 건너뛰기




Volumn 15, Issue , 2015, Pages 3691-3734

Semi-supervised eigenvectors for large-scale locally-biased learning

Author keywords

Kernel methods; Large scale machine learning; Local spectral methods; Locally biased learning; Semi supervised learning; Spectral clustering

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; INFORMATION ANALYSIS; LAPLACE TRANSFORMS; LEARNING ALGORITHMS; SUPERVISED LEARNING;

EID: 84919754604     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (15)

References (53)
  • 3
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on Riemannian manifolds
    • M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian manifolds. Machine Learning, 56:209-239, 2004.
    • (2004) Machine Learning , vol.56 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 55449104028 scopus 로고    scopus 로고
    • Towards a theoretical foundation for Laplacian-based manifold methods
    • M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold methods. Journal of Computer and System Sciences, 74(8):1289-1308, 2008.
    • (2008) Journal of Computer and System Sciences , vol.74 , Issue.8 , pp. 1289-1308
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 13
    • 29244453931 scopus 로고    scopus 로고
    • On the Nyström method for approximating a Gram matrix for improved kernel-based learning
    • P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6:2153-2175, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 2153-2175
    • Drineas, P.1    Mahoney, M.W.2
  • 18
    • 0041848443 scopus 로고    scopus 로고
    • Topic-sensitive PageRank: A context-sensitive ranking algorithm for web search
    • T.H. Haveliwala. Topic-sensitive PageRank: A context-sensitive ranking algorithm for web search. IEEE Transactions on Knowledge and Data Engineering, 15(4):784-796, 2003.
    • (2003) IEEE Transactions on Knowledge and Data Engineering , vol.15 , Issue.4 , pp. 784-796
    • Haveliwala, T.H.1
  • 25
    • 84869155042 scopus 로고    scopus 로고
    • A local spectral method for graphs: With applications to improving graph partitions and exploring data graphs locally
    • M. W. Mahoney, L. Orecchia, and N. K. Vishnoi. A local spectral method for graphs: with applications to improving graph partitions and exploring data graphs locally. Journal of Machine Learning Research, 13:2339-2365, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 2339-2365
    • Mahoney, M.W.1    Orecchia, L.2    Vishnoi, N.K.3
  • 27
    • 77952328459 scopus 로고    scopus 로고
    • Community structure in time-dependent, multiscale, and multiplex networks
    • P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, and J.P. Onnela. Community structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980):876-878, 2010.
    • (2010) Science , vol.328 , Issue.5980 , pp. 876-878
    • Mucha, P.J.1    Richardson, T.2    Macon, K.3    Porter, M.A.4    Onnela, J.P.5
  • 38
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by local linear embedding
    • S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by local linear embedding. Science, 290:2323-2326, 2000.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 39
    • 33750733400 scopus 로고    scopus 로고
    • Spectral methods for dimensionality reduction
    • O. Chapelle, B. Schoelkopf, and A. Zien, editors, MIT Press
    • L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, and D. D. Lee. Spectral methods for dimensionality reduction. In O. Chapelle, B. Schoelkopf, and A. Zien, editors, Semisu-pervised Learning, pages 293-308. MIT Press, 2006.
    • (2006) Semisu-pervised Learning , pp. 293-308
    • Saul, L.K.1    Weinberger, K.Q.2    Ham, J.H.3    Sha, F.4    Lee, D.D.5
  • 45
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 47
    • 77956378714 scopus 로고    scopus 로고
    • Technical report, 2009. Preprint: arXiv:0912.0238
    • S. Vigna. Spectral ranking. Technical report, 2009. Preprint: arXiv:0912.0238 (2009).
    • (2009) Spectral Ranking
    • Vigna, S.1
  • 48
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of small-world networks
    • D.J. Watts and S.H. Strogatz. Collective dynamics of small-world networks. Nature, 393:440-442, 1998.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.