메뉴 건너뛰기




Volumn 27, Issue 23, 2014, Pages 8793-8808

Quantifying sources of uncertainty in projections of future climate

Author keywords

[No Author keywords available]

Indexed keywords

CLIMATE CHANGE; REGIONAL PLANNING;

EID: 84919608236     PISSN: 08948755     EISSN: None     Source Type: Journal    
DOI: 10.1175/JCLI-D-14-00265.1     Document Type: Article
Times cited : (52)

References (31)
  • 1
    • 84897149362 scopus 로고    scopus 로고
    • lme4: Linear mixed-effects models using Eigen and S4
    • R package version 1.1-7
    • Bates, D.,M.Maechler, B. Bolker, and S. Walker, cited 2014: lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. [Available online at http://CRAN.R-project.org/package=lme4.]
    • (2014)
    • Bates, D.1    Maechler, M.2    Bolker, B.3    Walker, S.4
  • 3
    • 33947255673 scopus 로고    scopus 로고
    • An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections
    • Déqué, M., and Coauthors., 2007: An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change, 81, 53-70, doi:10.1007/s10584-006-9228-x.
    • (2007) Climatic Change , vol.81 , pp. 53-70
    • Déqué, M.1
  • 4
    • 77949535517 scopus 로고    scopus 로고
    • akima: Interpolation of irregularly spaced data
    • Gebhardt, A., T. Petzoldt, and M. Maechler, cited 2013: akima: Interpolation of irregularly spaced data. [Available online at http://CRAN.R-project.org/package=akima.]
    • (2013)
    • Gebhardt, A.1    Petzoldt, T.2    Maechler, M.3
  • 5
    • 18444393093 scopus 로고    scopus 로고
    • Analysis of variance-Why it is more important than ever
    • Gelman, A., 2005: Analysis of variance-Why it is more important than ever. Ann. Stat., 33, 1-53, doi:10.1214/009053604000001048.
    • (2005) Ann. Stat. , vol.33 , pp. 1-53
    • Gelman, A.1
  • 6
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman, A., 2006: Prior distributions for variance parameters in hierarchical models. Bayesian Anal., 1, 515-533.
    • (2006) Bayesian Anal. , vol.1 , pp. 515-533
    • Gelman, A.1
  • 7
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., and D. B. Rubin, 1992: Inference from iterative simulation using multiple sequences. Stat. Sci., 7, 457-472, doi:10.1214/ss/1177011136.
    • (1992) Stat. Sci. , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 12
    • 68849112077 scopus 로고    scopus 로고
    • Analysis of data from nonorthogonal multistratum designs in industrial experiments
    • Gilmour, S. G., and P. Goos, 2009: Analysis of data from nonorthogonal multistratum designs in industrial experiments. J. Roy. Stat. Soc., 58C, 467-484, doi:10.1111/j.1467-9876.2009.00662.x.
    • (2009) J. Roy. Stat. Soc. , vol.58 C , pp. 467-484
    • Gilmour, S.G.1    Goos, P.2
  • 13
    • 0034352904 scopus 로고    scopus 로고
    • Evaluating uncertainties in the prediction of regional climate change
    • Giorgi, F., and R. Francisco, 2000a: Evaluating uncertainties in the prediction of regional climate change. Geophys. Res. Lett., 27, 1295-1298, doi:10.1029/1999GL011016.
    • (2000) Geophys. Res. Lett. , vol.27 , pp. 1295-1298
    • Giorgi, F.1    Francisco, R.2
  • 14
    • 0034035579 scopus 로고    scopus 로고
    • Uncertainties in regional climate change prediction: A regional analysis of ensemble simulations with the HADCM2 coupled AOGCM
    • Giorgi, F., and R. Francisco, 2000b: Uncertainties in regional climate change prediction: A regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Climate Dyn., 16, 169-182, doi:10.1007/PL00013733.
    • (2000) Climate Dyn. , vol.16 , pp. 169-182
    • Giorgi, F.1    Francisco, R.2
  • 15
    • 0037092719 scopus 로고    scopus 로고
    • Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the reliability ensemble averaging (REA) method
    • Giorgi, F., and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the reliability ensemble averaging (REA) method. J. Climate, 15, 1141-1158, doi:10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2.
    • (2002) J. Climate , vol.15 , pp. 1141-1158
    • Giorgi, F.1    Mearns, L.O.2
  • 16
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems
    • Harville, D. A., 1977: Maximum likelihood approaches to variance component estimation and to related problems. J. Amer. Stat. Assoc., 72, 320-340, doi:10.1080/01621459.1977.10480998.
    • (1977) J. Amer. Stat. Assoc. , vol.72 , pp. 320-340
    • Harville, D.A.1
  • 17
    • 70450173156 scopus 로고    scopus 로고
    • The potential to narrow uncertainty in regional climate predictions
    • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 1095-1107, doi:10.1175/2009BAMS2607.1.
    • (2009) Bull. Amer. Meteor. Soc. , vol.90 , pp. 1095-1107
    • Hawkins, E.1    Sutton, R.2
  • 18
    • 34248141801 scopus 로고    scopus 로고
    • Development of probability distributions for regional climate change from uncertain global mean warming and an uncertain scaling relationship
    • Hingray, B., A. Mezghani, and T. Buishand, 2007: Development of probability distributions for regional climate change from uncertain global mean warming and an uncertain scaling relationship. Hydrol. Earth Syst. Sci., 11, 1097-1114, doi:10.5194/hess-11-1097-2007.
    • (2007) Hydrol. Earth Syst. Sci. , vol.11 , pp. 1097-1114
    • Hingray, B.1    Mezghani, A.2    Buishand, T.3
  • 19
    • 0034336818 scopus 로고    scopus 로고
    • Designs for variance components estimation: Past and present
    • Khuri, A. I., 2000: Designs for variance components estimation: Past and present. Int. Stat. Rev., 68, 311-322, doi:10.1111/j.1751-5823.2000.tb00333.x.
    • (2000) Int. Stat. Rev. , vol.68 , pp. 311-322
    • Khuri, A.I.1
  • 20
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-A Bayesian modelling framework: Concepts, structure and extensibility
    • Lunn, D., A. Thomas, N. Best, and D. Spiegelhalter, 2000: WinBUGS-A Bayesian modelling framework: Concepts, structure and extensibility. Stat. Comput., 10, 325-337, doi:10.1023/A:1008929526011.
    • (2000) Stat. Comput. , vol.10 , pp. 325-337
    • Lunn, D.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 22
    • 0042742904 scopus 로고
    • Posterior predictive p-values
    • Meng, X. L., 1994: Posterior predictive p-values. Ann. Stat., 22, 1142-1160, doi:10.1214/aos/1176325622.
    • (1994) Ann. Stat. , vol.22 , pp. 1142-1160
    • Meng, X.L.1
  • 24
    • 77956889208 scopus 로고
    • Recovery of interblock information when block sizes are unequal
    • Patterson, H. D., and R. Thompson, 1971: Recovery of interblock information when block sizes are unequal. Biometrika, 58, 545-554, doi:10.1093/biomet/58.3.545.
    • (1971) Biometrika , vol.58 , pp. 545-554
    • Patterson, H.D.1    Thompson, R.2
  • 25
    • 84872515955 scopus 로고    scopus 로고
    • On the half-Cauchy prior for a global scale parameter
    • Polson, N. G., and J. G. Scott, 2012: On the half-Cauchy prior for a global scale parameter. Bayesian Anal., 7, 887-902.
    • (2012) Bayesian Anal. , vol.7 , pp. 887-902
    • Polson, N.G.1    Scott, J.G.2
  • 26
    • 0035325007 scopus 로고    scopus 로고
    • 2-induced climate change in CMIP2 experiments: Quantification of agreement and role of internal variability
    • 2-induced climate change in CMIP2 experiments: Quantification of agreement and role of internal variability. J. Climate, 14, 2088-2104, doi:10.1175/1520-0442(2001)014<2088:CICCIC>2.0.CO;2.
    • (2001) J. Climate , vol.14 , pp. 2088-2104
    • Raisanen, J.1
  • 28
    • 84868628167 scopus 로고    scopus 로고
    • Statistical problems in the probabilistic prediction of climate change
    • Stephenson, D., M. Collins, J. C. Rougier, and R. E. Chandler, 2012: Statistical problems in the probabilistic prediction of climate change. Environmetrics, 23, 364-372, doi:10.1002/env.2153.
    • (2012) Environmetrics , vol.23 , pp. 364-372
    • Stephenson, D.1    Collins, M.2    Rougier, J.C.3    Chandler, R.E.4
  • 29
    • 34547177691 scopus 로고    scopus 로고
    • The use of the multi-model ensemble in probabilistic climate projections
    • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, 365A, 2053-2075, doi:10.1098/rsta.2007.2076.
    • (2007) Philos. Trans. Roy. Soc. London , vol.365 A , pp. 2053-2075
    • Tebaldi, C.1    Knutti, R.2
  • 30
    • 80053903024 scopus 로고    scopus 로고
    • The representative concentration pathways: An overview
    • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 5-32, doi:10.1007/s10584-011-0148-z.
    • (2011) Climatic Change , vol.109 , pp. 5-32
    • van Vuuren, D.P.1
  • 31
    • 80053139719 scopus 로고    scopus 로고
    • A simple, coherent framework for partitioning uncertainty in climate predictions
    • Yip, S., C. A. T. Ferro, D. B. Stephenson, and E. Hawkins, 2011: A simple, coherent framework for partitioning uncertainty in climate predictions. J. Climate, 24, 4634-4643, doi:10.1175/2011JCLI4085.1.
    • (2011) J. Climate , vol.24 , pp. 4634-4643
    • Yip, S.1    Ferro, C.A.T.2    Stephenson, D.B.3    Hawkins, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.