메뉴 건너뛰기




Volumn 18, Issue 11, 2014, Pages 2253-2270

Enhancement of artificial neural network learning using centripetal accelerated particle swarm optimization for medical diseases diagnosis

Author keywords

Artificial neural networks; Centripetal accelerated particle swarm optimization; Hybrid learning; Multi layer perceptron network; Particle swarm optimization

Indexed keywords

CLASSIFICATION (OF INFORMATION); DIAGNOSIS; DISEASES; EFFICIENCY; ENGINEERING EDUCATION; HEURISTIC ALGORITHMS; MEAN SQUARE ERROR; MULTILAYER NEURAL NETWORKS; NETWORK LAYERS; NEURAL NETWORKS; PARTICLE ACCELERATORS; PARTICLE SWARM OPTIMIZATION (PSO); SWARM INTELLIGENCE;

EID: 84919420846     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-013-1198-0     Document Type: Article
Times cited : (63)

References (75)
  • 2
    • 84993957635 scopus 로고    scopus 로고
    • Evolving artificial neural network and imperialist competitive algorithm for prediction permeability of the reservoir
    • Ahmadi MA, Ahmadi MR, Shadizadeh SR (2013) Evolving artificial neural network and imperialist competitive algorithm for prediction permeability of the reservoir. Neural Comput Appl 23:563
    • (2013) Neural Comput Appl , vol.23 , pp. 563
    • Ahmadi, M.A.1    Ahmadi, M.R.2    Shadizadeh, S.R.3
  • 4
    • 53749093363 scopus 로고    scopus 로고
    • In search of an optimization technique for artificial neural network to classify abnormal heart sounds
    • Ari S, Saha G (2009) In search of an optimization technique for artificial neural network to classify abnormal heart sounds. Appl Soft Comput 9:330–340
    • (2009) Appl Soft Comput , vol.9 , pp. 330-340
    • Ari, S.1    Saha, G.2
  • 5
    • 0032891126 scopus 로고    scopus 로고
    • Artificial neural networks in chest radiography: application to the differential diagnosis of interstitial lung disease
    • Ashizawa K, Ishida T, MacMahon H, Vyborny CJ, Katsuragawa S, Doi K (1999) Artificial neural networks in chest radiography: application to the differential diagnosis of interstitial lung disease. Acad Radiol 6:2–9
    • (1999) Acad Radiol , vol.6 , pp. 2-9
    • Ashizawa, K.1    Ishida, T.2    MacMahon, H.3    Vyborny, C.J.4    Katsuragawa, S.5    Doi, K.6
  • 6
    • 78149290542 scopus 로고    scopus 로고
    • Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: Proceedings of IEEE congress on evolutionary computation
    • Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: Proceedings of IEEE congress on evolutionary computation, pp 4661–4667
    • (2007) pp 4661–4667
    • Atashpaz-Gargari, E.1    Lucas, C.2
  • 7
    • 50149116144 scopus 로고    scopus 로고
    • Dynamic classification for video stream using support vector machine
    • Awad M, Motai Y (2008) Dynamic classification for video stream using support vector machine. Appl Soft Comput 8:1314–1325
    • (2008) Appl Soft Comput , vol.8 , pp. 1314-1325
    • Awad, M.1    Motai, Y.2
  • 8
    • 84887747830 scopus 로고    scopus 로고
    • UCI machine learning repository
    • University of, California, Irvine:
    • Bache K, Lichman M (2013) UCI machine learning repository. School of Information and Computer Science, University of California, Irvine. http://archive.ics.uci.edu/ml
    • (2013) School of Information and Computer Science
    • Bache, K.1    Lichman, M.2
  • 10
    • 84884317289 scopus 로고    scopus 로고
    • A review of population-based meta-heuristic algorithm
    • Beheshti Z, Shamsuddin SM (2013b) A review of population-based meta-heuristic algorithm. Int J Adv Soft Comput Appl 5(1):1–35
    • (2013) Int J Adv Soft Comput Appl , vol.5 , Issue.1 , pp. 1-35
    • Beheshti, Z.1    Shamsuddin, S.M.2
  • 11
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • Bennett KP, Mangasarian OL (1992) Robust linear programming discrimination of two linearly inseparable sets. Optim Method Softw 1:23–34
    • (1992) Optim Method Softw , vol.1 , pp. 23-34
    • Bennett, K.P.1    Mangasarian, O.L.2
  • 12
    • 0003487601 scopus 로고
    • Neural networks for pattern recognition. Oxford University Press
    • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford
    • (1995) Oxford
    • Bishop, C.M.1
  • 13
    • 84919456887 scopus 로고
    • Stone C: Classification and regression trees. Wadsworth
    • Breiman L, Friedman JH, Olshen RA, Stone C (1984) Classification and regression trees. Wadsworth
    • (1984) Olshen RA
    • Breiman, L.1    Friedman, J.H.2
  • 14
    • 0026154952 scopus 로고
    • Fast training algorithms for multi-layer neural nets
    • Brent RP (1991) Fast training algorithms for multi-layer neural nets. IEEE Trans Neural Netw 2:346–354
    • (1991) IEEE Trans Neural Netw , vol.2 , pp. 346-354
    • Brent, R.P.1
  • 16
    • 34147105043 scopus 로고    scopus 로고
    • Application of a PSO-based neural network in analysis of outcomes of construction claims
    • Chau KW (2007) Application of a PSO-based neural network in analysis of outcomes of construction claims. Autom Constr 16:642– 646
    • (2007) Autom Constr , vol.16 , pp. 642-646
    • Chau, K.W.1
  • 17
    • 34547875056 scopus 로고    scopus 로고
    • Comparing extended classifier system and genetic programming for financial forecasting: an empirical study
    • Chen MY, Chen KK, Chiang HK, Huang HS, Huang MJ (2007) Comparing extended classifier system and genetic programming for financial forecasting: an empirical study. Soft Comput. 11:1173–1183
    • (2007) Soft Comput. , vol.11 , pp. 1173-1183
    • Chen, M.Y.1    Chen, K.K.2    Chiang, H.K.3    Huang, H.S.4    Huang, M.J.5
  • 18
    • 33750478385 scopus 로고    scopus 로고
    • Computer-aided diagnosis of emphysema in COPD patients: neural-network-based analysis of lung shape in digital chest radiographs
    • Coppini G, Miniati M, Paterni M, Monti S, Ferdeghini EM (2007) Computer-aided diagnosis of emphysema in COPD patients: neural-network-based analysis of lung shape in digital chest radiographs. Med Eng Phys 29:76–86
    • (2007) Med Eng Phys , vol.29 , pp. 76-86
    • Coppini, G.1    Miniati, M.2    Paterni, M.3    Monti, S.4    Ferdeghini, E.M.5
  • 20
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: a comparison of three data mining methods
    • Delen D, Walker G, Kadam A (2005) Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 34:113–127
    • (2005) Artif Intell Med , vol.34 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 22
    • 84859580338 scopus 로고    scopus 로고
    • Support vector machines for classification and locating faults on transmission lines
    • Ekici S (2012) Support vector machines for classification and locating faults on transmission lines. Appl Soft Comput 12:1650–1658
    • (2012) Appl Soft Comput , vol.12 , pp. 1650-1658
    • Ekici, S.1
  • 23
    • 79959686891 scopus 로고    scopus 로고
    • Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm
    • Elveren E, Yumuşak N (2011) Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. J Med Syst 35:329–332
    • (2011) J Med Syst , vol.35 , pp. 329-332
    • Elveren, E.1    Yumuşak, N.2
  • 24
    • 70350212708 scopus 로고    scopus 로고
    • A comparative study on chronic obstructive pulmonary and pneumonia diseases diagnosis using neural networks and artificial immune system
    • Er O, Sertkaya C, Temurtas F, Tanrikulu AC (2009) A comparative study on chronic obstructive pulmonary and pneumonia diseases diagnosis using neural networks and artificial immune system. J Med Syst 33:485–492
    • (2009) J Med Syst , vol.33 , pp. 485-492
    • Er, O.1    Sertkaya, C.2    Temurtas, F.3    Tanrikulu, A.C.4
  • 25
    • 77957898242 scopus 로고    scopus 로고
    • A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification
    • Fana CY, Changb PC, Linb JJ, Hsiehb JC (2011) A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Appl Soft Comput 11:632–644
    • (2011) Appl Soft Comput , vol.11 , pp. 632-644
    • Fana, C.Y.1    Changb, P.C.2    Linb, J.J.3    Hsiehb, J.C.4
  • 26
    • 46149127936 scopus 로고
    • The immune system, adaptation and machine learning
    • Farmer JD, Packard NH, Perelson AS (1986) The immune system, adaptation and machine learning. Phys D 2:187–204
    • (1986) Phys D , vol.2 , pp. 187-204
    • Farmer, J.D.1    Packard, N.H.2    Perelson, A.S.3
  • 27
    • 1542323024 scopus 로고
    • Fundamentals of neural networks: architectures, algorithms
    • Prentice-Hall, New Jersey:
    • Fausett LV (1994) Fundamentals of neural networks: architectures, algorithms, and applications. Prentice-Hall, New Jersey
    • (1994) and applications
    • Fausett, L.V.1
  • 28
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874
    • (2006) Pattern Recognit Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 29
    • 4043111226 scopus 로고    scopus 로고
    • Comparison of neural network predictors in the classification of tracheal-bronchial breath sounds by respiratory auscultation
    • Folland R, Hines E, Dutta R, Boilot P, Morgan D (2004) Comparison of neural network predictors in the classification of tracheal-bronchial breath sounds by respiratory auscultation. Artif Intell Med 31:211–220
    • (2004) Artif Intell Med , vol.31 , pp. 211-220
    • Folland, R.1    Hines, E.2    Dutta, R.3    Boilot, P.4    Morgan, D.5
  • 30
    • 84861702022 scopus 로고    scopus 로고
    • Particle swarm optimization with chaotic opposition based population initialization and stochastic search technique
    • Gao WF, Liu SY, Huang LL (2012) Particle swarm optimization with chaotic opposition based population initialization and stochastic search technique. Commun Nonlinear Sci Numer Simul 17:4316–4327
    • (2012) Commun Nonlinear Sci Numer Simul , vol.17 , pp. 4316-4327
    • Gao, W.F.1    Liu, S.Y.2    Huang, L.L.3
  • 31
    • 68849109676 scopus 로고    scopus 로고
    • Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
    • García S, Fernández A, Herrera F (2009) Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems. Appl Soft Comput 9:1304–1314
    • (2009) Appl Soft Comput , vol.9 , pp. 1304-1314
    • García, S.1    Fernández, A.2    Herrera, F.3
  • 32
    • 0026745182 scopus 로고
    • On the problem of local minima in backpropagation
    • Gori M, Tesi A (1992) On the problem of local minima in backpropagation. IEEE Trans Pattern Anal Mach Intell 14:76–85
    • (1992) IEEE Trans Pattern Anal Mach Intell , vol.14 , pp. 76-85
    • Gori, M.1    Tesi, A.2
  • 33
    • 84919456885 scopus 로고    scopus 로고
    • An introduction to neural networks
    • Gurney KN (1997) An introduction to neural networks. Routledge
    • (1997) Routledge
    • Gurney, K.N.1
  • 34
    • 0344004828 scopus 로고    scopus 로고
    • Feature selection for optimized skin tumor recognition using genetic algorithms
    • Handels H, Roß TH, Kreusch J, Wolff HH, Poppl SJ (1999) Feature selection for optimized skin tumor recognition using genetic algorithms. Artif Intell Med 16:283–297
    • (1999) Artif Intell Med , vol.16 , pp. 283-297
    • Handels, H.1    Roß, T.H.2    Kreusch, J.3    Wolff, H.H.4    Poppl, S.J.5
  • 35
    • 0023566098 scopus 로고
    • Kolmogorov’s mapping neural network existence theorem. In: Proceedings of IEEE international conference on neural networks
    • Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of IEEE international conference on neural networks, pp 11–14
    • (1987) pp 11–14
    • Hecht-Nielsen, R.1
  • 36
    • 0346848886 scopus 로고    scopus 로고
    • Use of genetic algorithms for neural networks to predict community-acquired pneumonia
    • Heckerling PS, Gerber BS, Tape TG, Wigton RS (2004) Use of genetic algorithms for neural networks to predict community-acquired pneumonia. Artif Intell Med 30:71–84
    • (2004) Artif Intell Med , vol.30 , pp. 71-84
    • Heckerling, P.S.1    Gerber, B.S.2    Tape, T.G.3    Wigton, R.S.4
  • 37
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 38
    • 2442513004 scopus 로고    scopus 로고
    • Improvements of real coded genetic algorithms based on differential operators preventing premature convergence
    • Hrstka O, Kučerová A (2004) Improvements of real coded genetic algorithms based on differential operators preventing premature convergence. Adv Eng Softw 35:237–246
    • (2004) Adv Eng Softw , vol.35 , pp. 237-246
    • Hrstka, O.1    Kučerová, A.2
  • 39
    • 77957593466 scopus 로고    scopus 로고
    • Neural network classifier with entropy based feature selection on breast cancer diagnosis
    • Huang ML, Hung YH, Chen WY (2010) Neural network classifier with entropy based feature selection on breast cancer diagnosis. J Med Syst 34:865–873
    • (2010) J Med Syst , vol.34 , pp. 865-873
    • Huang, M.L.1    Hung, Y.H.2    Chen, W.Y.3
  • 41
    • 56349123043 scopus 로고    scopus 로고
    • An expert system for detection of breast cancer based on association rules and neural network
    • Karabatak M, Ince MC (2009) An expert system for detection of breast cancer based on association rules and neural network. Expert Syst Appl 36:3465–3469
    • (2009) Expert Syst Appl , vol.36 , pp. 3465-3469
    • Karabatak, M.1    Ince, M.C.2
  • 42
    • 35148827874 scopus 로고    scopus 로고
    • An idea based on honey bee swarm for numerical optimization. Technical Report, TR06
    • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report, TR06, Erciyes University
    • (2005) Erciyes University
    • Karaboga, D.1
  • 43
    • 84919456883 scopus 로고    scopus 로고
    • Medical diagnosis on Pima Indian diabetes using general regression neural networks. In: Proceedings of international conference on artificial neural networks and neural information
    • Kayaer K, Yildirim T (2003) Medical diagnosis on Pima Indian diabetes using general regression neural networks. In: Proceedings of international conference on artificial neural networks and neural information, pp 181–184
    • (2003) pp 181–184
    • Kayaer, K.1    Yildirim, T.2
  • 44
    • 0029535737 scopus 로고
    • Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks
    • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948
    • (1995) pp 1942–1948
    • Kennedy, J.1    Eberhart, R.2
  • 45
    • 34547116654 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy computing technique for evapotranspiration estimation
    • Kisi O, Ozturk O (2007) Adaptive neuro-fuzzy computing technique for evapotranspiration estimation. J Irrig Drainage Eng ASCE 133:368–379
    • (2007) J Irrig Drainage Eng ASCE , vol.133 , pp. 368-379
    • Kisi, O.1    Ozturk, O.2
  • 46
    • 84919456881 scopus 로고    scopus 로고
    • Kuncheva LI (2005) Real medical data sets. Tech. Rep. School of Informatics: University of Wales, Bangor
    • Kuncheva LI (2005) Real medical data sets. Tech. Rep. School of Informatics: University of Wales, Bangor. http://www.bangor.ac.uk/~mas00a/activities/real_data.htm
  • 47
    • 0031236881 scopus 로고    scopus 로고
    • Degree of population diversity—a perspective on premature convergence in genetic algorithms and its Markov chain analysis
    • Leung Y, Gao Y, Xu ZB (1997) Degree of population diversity—a perspective on premature convergence in genetic algorithms and its Markov chain analysis. IEEE Trans Neural Netw 8:1165–1176
    • (1997) IEEE Trans Neural Netw , vol.8 , pp. 1165-1176
    • Leung, Y.1    Gao, Y.2    Xu, Z.B.3
  • 48
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10:281–295
    • (2006) IEEE Trans Evol Comput , vol.10 , pp. 281-295
    • Liang, J.J.1    Qin, A.K.2    Suganthan, P.N.3    Baskar, S.4
  • 49
    • 39749102380 scopus 로고    scopus 로고
    • Content based audio classification: a neural network approach
    • Mitra V, Wang CJ (2008) Content based audio classification: a neural network approach. Soft Comput 12:639–646
    • (2008) Soft Comput , vol.12 , pp. 639-646
    • Mitra, V.1    Wang, C.J.2
  • 50
    • 84859552114 scopus 로고    scopus 로고
    • A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems
    • Moslemipour G, Lee TS, Rilling D (2012) A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. Int J Adv Manuf Technol 60:11–27
    • (2012) Int J Adv Manuf Technol , vol.60 , pp. 11-27
    • Moslemipour, G.1    Lee, T.S.2    Rilling, D.3
  • 51
    • 84864445315 scopus 로고    scopus 로고
    • Hybrid system with genetic algorithm and artificial neural networks and its application to retail credit risk assessment
    • Oreski S, Oreski D, Oreski G (2012) Hybrid system with genetic algorithm and artificial neural networks and its application to retail credit risk assessment. Expert Syst Appl 39:12605–12617
    • (2012) Expert Syst Appl , vol.39 , pp. 12605-12617
    • Oreski, S.1    Oreski, D.2    Oreski, G.3
  • 52
    • 80053945047 scopus 로고    scopus 로고
    • Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration
    • Ozkan C, Kisi O, Akay B (2011) Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration. Irrig Sci 29:431–441
    • (2011) Irrig Sci , vol.29 , pp. 431-441
    • Ozkan, C.1    Kisi, O.2    Akay, B.3
  • 53
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis function networks
    • Park J, Sandberg I (1991) Universal approximation using radial-basis function networks. Neural Comput 3:246–257
    • (1991) Neural Comput , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.2
  • 54
    • 0029412003 scopus 로고
    • Some notes on neural learning algorithm benchmarking
    • Prechelt L (1995) Some notes on neural learning algorithm benchmarking. Neurocomputing 9:343–347
    • (1995) Neurocomputing , vol.9 , pp. 343-347
    • Prechelt, L.1
  • 55
    • 77957907005 scopus 로고    scopus 로고
    • Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis
    • Qasem SN, Shamsuddin SM (2011) Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis. Appl Soft Comput 11:1427–1438
    • (2011) Appl Soft Comput , vol.11 , pp. 1427-1438
    • Qasem, S.N.1    Shamsuddin, S.M.2
  • 56
    • 35248864219 scopus 로고
    • Programs for Machine Learning, Morgan Kaufmann:
    • Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann
    • (1993) C4.5
    • Quinlan, J.R.1
  • 57
  • 58
    • 55549102282 scopus 로고    scopus 로고
    • A multi-objective GRASP for partial classification
    • Reynolds AP, Iglesia B (2009) A multi-objective GRASP for partial classification. Soft Comput 13:227–243
    • (2009) Soft Comput , vol.13 , pp. 227-243
    • Reynolds, A.P.1    Iglesia, B.2
  • 60
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • Samanta B, Al-Balushi KR, Al-Araimi SA (2003) Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Eng Appl Artif Intell 16:657–665
    • (2003) Eng Appl Artif Intell , vol.16 , pp. 657-665
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 61
    • 33750962698 scopus 로고    scopus 로고
    • Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems
    • Saxena A, Saad A (2007) Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems. Appl Soft Comput 7:441–454
    • (2007) Appl Soft Comput , vol.7 , pp. 441-454
    • Saxena, A.1    Saad, A.2
  • 63
    • 0029185114 scopus 로고
    • Use of a quasinewton method in a feedforward neural network construction algorithm
    • Setiono R, Hui LCK (1995) Use of a quasinewton method in a feedforward neural network construction algorithm. IEEE Trans Neural Netw 6:740–747
    • (1995) IEEE Trans Neural Netw , vol.6 , pp. 740-747
    • Setiono, R.1    Hui, L.C.K.2
  • 64
    • 0031700696 scopus 로고    scopus 로고
    • A modified particle swarm optimizer. In: Proceedings of IEEE international conference on evolutionary computation
    • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEE international conference on evolutionary computation, pp 69–73
    • (1998) pp 69–73
    • Shi, Y.1    Eberhart, R.2
  • 65
    • 33845621875 scopus 로고    scopus 로고
    • A hybrid approach for feature subset selection using neural networks and ant colony optimization
    • Sivagaminathan RK, Ramakrishnan S (2007) A hybrid approach for feature subset selection using neural networks and ant colony optimization. Expert Syst Appl 33:49–60
    • (2007) Expert Syst Appl , vol.33 , pp. 49-60
    • Sivagaminathan, R.K.1    Ramakrishnan, S.2
  • 66
    • 34547535038 scopus 로고    scopus 로고
    • An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training
    • Socha K, Blum C (2007) An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput Appl 16:235–247
    • (2007) Neural Comput Appl , vol.16 , pp. 235-247
    • Socha, K.1    Blum, C.2
  • 67
    • 84858430271 scopus 로고    scopus 로고
    • An artificial immune-based hybrid multi-layer feedforward neural network for predicting grid-connected photovoltaic system output
    • Sulaiman SI, Abdul-Rahman TK, Musirin I, Shaari S (2012) An artificial immune-based hybrid multi-layer feedforward neural network for predicting grid-connected photovoltaic system output. Energy Proc 14:260–264
    • (2012) Energy Proc , vol.14 , pp. 260-264
    • Sulaiman, S.I.1    Abdul-Rahman, T.K.2    Musirin, I.3    Shaari, S.4
  • 69
    • 84878020490 scopus 로고    scopus 로고
    • Evolving artificial neural network structure using grammar encoding and colonial competitive algorithm
    • Tayefeh-Mahmoudi M, Taghiyareh F, Forouzideh N, Lucas C (2013) Evolving artificial neural network structure using grammar encoding and colonial competitive algorithm. Neural Comput Appl 22:1–16
    • (2013) Neural Comput Appl , vol.22 , pp. 1-16
    • Tayefeh-Mahmoudi, M.1    Taghiyareh, F.2    Forouzideh, N.3    Lucas, C.4
  • 70
    • 53849093453 scopus 로고    scopus 로고
    • A comparative study on thyroid disease diagnosis using neural networks
    • Temurtas F (2007) A comparative study on thyroid disease diagnosis using neural networks. Expert Syst Appl 36:944–949
    • (2007) Expert Syst Appl , vol.36 , pp. 944-949
    • Temurtas, F.1
  • 71
    • 55949107365 scopus 로고    scopus 로고
    • Neural network construction and training using grammatical evolution
    • Tsoulos I, Gavrilis D, Glavas E (2008) Neural network construction and training using grammatical evolution. Neurocomputing 72:269–277
    • (2008) Neurocomputing , vol.72 , pp. 269-277
    • Tsoulos, I.1    Gavrilis, D.2    Glavas, E.3
  • 72
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1:80–83
    • (1945) Biometrics Bull , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 73
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87:1423–1447
    • (1999) Proc IEEE , vol.87 , pp. 1423-1447
    • Yao, X.1
  • 74
    • 0034514095 scopus 로고    scopus 로고
    • Particle swarm optimization for evolving artificial neural network. In: Proceedings of IEEE international conference on systems, man, and sybernetics
    • Zhang C, Shao H, Li Y (2000) Particle swarm optimization for evolving artificial neural network. In: Proceedings of IEEE international conference on systems, man, and sybernetics, pp 2487–2490
    • (2000) pp 2487–2490
    • Zhang, C.1    Shao, H.2    Li, Y.3
  • 75
    • 0242573524 scopus 로고    scopus 로고
    • Genetic algorithms and artificial neural networks for loading pattern optimization of advanced gas-cooled reactors
    • Ziver AK, Pain CC, Carter JN, de Oliveira CRE, Goddard AJ, Overton RS (2004) Genetic algorithms and artificial neural networks for loading pattern optimization of advanced gas-cooled reactors. Ann Nucl Energy 13:431–457
    • (2004) Ann Nucl Energy , vol.13 , pp. 431-457
    • Ziver, A.K.1    Pain, C.C.2    Carter, J.N.3    de Oliveira, C.R.E.4    Goddard, A.J.5    Overton, R.S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.