메뉴 건너뛰기




Volumn 6, Issue 4, 2011, Pages 414-421

Ensembled neural networks for brain death prediction for patients with severe head injury

Author keywords

Brain death index (BDI); Ensembled neural networks (ENNs); Irreversible apnoeic coma (IAC); Multi layer perceptron (MLP)

Indexed keywords

DIAGNOSIS; ERRORS; FORECASTING; INPUT OUTPUT PROGRAMS; LEARNING TO RANK; NETWORK LAYERS; PREDICTIVE ANALYTICS; SENSITIVITY ANALYSIS;

EID: 80052437831     PISSN: 17468094     EISSN: 17468108     Source Type: Journal    
DOI: 10.1016/j.bspc.2011.01.002     Document Type: Article
Times cited : (11)

References (47)
  • 1
    • 0033057977 scopus 로고    scopus 로고
    • A matter of life and death: What every anesthesiologist should know about the medical, legal, and ethical aspects of declaring brain death
    • G.A. Van Norman A matter of life and death: what every anesthesiologist should know about the medical, legal, and ethical aspects of declaring brain death Anesthesiology 91 1999 275 287
    • (1999) Anesthesiology , vol.91 , pp. 275-287
    • Van Norman, G.A.1
  • 2
    • 4644281654 scopus 로고    scopus 로고
    • Irreversible apnoeic coma 35 years later towards a more rigorous definition of brain death
    • N Zamperetti, R. Bellomo, and C.A. Defanti Irreversible apnoeic coma 35 years later towards a more rigorous definition of brain death Intensive Care Med. 30 2004 1715 1722
    • (2004) Intensive Care Med. , vol.30 , pp. 1715-1722
    • Zamperetti, N.1    Bellomo, R.2    Defanti, C.A.3
  • 3
    • 0037039257 scopus 로고    scopus 로고
    • Brain death worldwide: Accepted fact but no global consensus in diagnostic criteria
    • E.F. Wijdicks Brain death worldwide: accepted fact but no global consensus in diagnostic criteria Neurology 58 2002 20 25
    • (2002) Neurology , vol.58 , pp. 20-25
    • Wijdicks, E.F.1
  • 4
    • 0032705183 scopus 로고    scopus 로고
    • The definition and determination of brain death
    • C.D. Reimers The definition and determination of brain death Bailliere's Clin. Anaesthesiol. 13 1999 211 225
    • (1999) Bailliere's Clin. Anaesthesiol. , vol.13 , pp. 211-225
    • Reimers, C.D.1
  • 5
    • 0035912158 scopus 로고    scopus 로고
    • The diagnosis of brain death
    • E.F. Wijdicks The diagnosis of brain death N. Engl. J. Med. 344 2001 1215 1221
    • (2001) N. Engl. J. Med. , vol.344 , pp. 1215-1221
    • Wijdicks, E.F.1
  • 7
    • 45149129019 scopus 로고    scopus 로고
    • A review of ancillary tests in evaluating brain death
    • M.K. Heran, N.S. Heran, and S.D. Shemine A review of ancillary tests in evaluating brain death Can. J. Neurol. Sci. 35 2008 409 419
    • (2008) Can. J. Neurol. Sci. , vol.35 , pp. 409-419
    • Heran, M.K.1    Heran, N.S.2    Shemine, S.D.3
  • 8
    • 0027404050 scopus 로고
    • Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function
    • B. Shivalkar, L.J. Van, and W. Wieland Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function Circulation 87 1993 230 239
    • (1993) Circulation , vol.87 , pp. 230-239
    • Shivalkar, B.1    Van, L.J.2    Wieland, W.3
  • 9
    • 0027102738 scopus 로고
    • Changes in serum catecholamine levels in patients who are brain dead
    • D.J. Powner, A. Hendricj, and A. Nyhuis Changes in serum catecholamine levels in patients who are brain dead J. Heart Lung Transplant. 11 1992 1046 1053
    • (1992) J. Heart Lung Transplant. , vol.11 , pp. 1046-1053
    • Powner, D.J.1    Hendricj, A.2    Nyhuis, A.3
  • 10
    • 4644225987 scopus 로고    scopus 로고
    • Physiologic changes during brain stem death-lessons for management of the organ donor
    • M. Smith Physiologic changes during brain stem death-lessons for management of the organ donor J. Heart Lung Transplant. 23 2004 217 222
    • (2004) J. Heart Lung Transplant. , vol.23 , pp. 217-222
    • Smith, M.1
  • 11
    • 40549089860 scopus 로고    scopus 로고
    • Can cerebral hypoperfusion after sympathetic storm be used to diagnose brain death? A retrospective survey in traumatic brain injury patients
    • C.L. Chai, Y.K. Tu, and S.J. Huang Can cerebral hypoperfusion after sympathetic storm be used to diagnose brain death? A retrospective survey in traumatic brain injury patients J. Trauma 64 2008 688 697
    • (2008) J. Trauma , vol.64 , pp. 688-697
    • Chai, C.L.1    Tu, Y.K.2    Huang, S.J.3
  • 12
    • 0023395657 scopus 로고
    • Task Force Report American Academy of Paediatric, Paediatric
    • Task Force Report, Guidelines for the determination of brain death in children. American Academy of Paediatric, Paediatric, 80 (1987) 298-300.
    • (1987) Guidelines for the Determination of Brain Death in Children , vol.80 , pp. 298-300
  • 14
    • 0030914688 scopus 로고    scopus 로고
    • Outcome after severe head injury: An analysis of prediction based upon comparison of neural network versus logistic regression analysis
    • E.W. Lang, L.H. Pitts, S.L. Damron, and R. Rutledge Outcome after severe head injury: an analysis of prediction based upon comparison of neural network versus logistic regression analysis Neurol. Res. 19 1997 274 280
    • (1997) Neurol. Res. , vol.19 , pp. 274-280
    • Lang, E.W.1    Pitts, L.H.2    Damron, S.L.3    Rutledge, R.4
  • 15
    • 42449105253 scopus 로고    scopus 로고
    • Early predictors of unfavourable outcome in subjects with moderate head injury in the emergency department
    • A. Fabbri, F. Servadei, G. Marchesini, S.C. Stein, and A. Vandelli Early predictors of unfavourable outcome in subjects with moderate head injury in the emergency department J. Neurol. Neurosurg. Psychiatry 79 2008 567 573
    • (2008) J. Neurol. Neurosurg. Psychiatry , vol.79 , pp. 567-573
    • Fabbri, A.1    Servadei, F.2    Marchesini, G.3    Stein, S.C.4    Vandelli, A.5
  • 18
    • 77956932961 scopus 로고    scopus 로고
    • Outcome prediction after moderate and severe head injury using an artificial neural network
    • M.H. Hsu, Y.C. Li, W.T. Chiu, and J.C. Yen Outcome prediction after moderate and severe head injury using an artificial neural network Stud. Health Technol. Inform. 116 2005 241 245
    • (2005) Stud. Health Technol. Inform. , vol.116 , pp. 241-245
    • Hsu, M.H.1    Li, Y.C.2    Chiu, W.T.3    Yen, J.C.4
  • 19
    • 0033969016 scopus 로고    scopus 로고
    • Neural network modeling for surgical decisions on traumatic brain injury patients
    • Y.C. Li, L. Lin, W.T. Chiu, and W.S. Jian Neural network modeling for surgical decisions on traumatic brain injury patients Int. J. Med. Inform. 57 2000 1 9
    • (2000) Int. J. Med. Inform. , vol.57 , pp. 1-9
    • Li, Y.C.1    Lin, L.2    Chiu, W.T.3    Jian, W.S.4
  • 20
    • 15244347342 scopus 로고    scopus 로고
    • Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data
    • B. Eftekhar, K. Mohammad, H.E. Ardebili, M. Ghodsi, and E. Ketabchi Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data BMC Med. Inform. Decis. Making 5 2005 3
    • (2005) BMC Med. Inform. Decis. Making , vol.5 , pp. 3
    • Eftekhar, B.1    Mohammad, K.2    Ardebili, H.E.3    Ghodsi, M.4    Ketabchi, E.5
  • 23
    • 3142666177 scopus 로고    scopus 로고
    • An ensemble of neural networks for weather forecasting
    • M. Imran, R.K. Muhammad, and A. Ajith An ensemble of neural networks for weather forecasting Neural Comput. Appl. 13 2004 112 122
    • (2004) Neural Comput. Appl. , vol.13 , pp. 112-122
    • Imran, M.1    Muhammad, R.K.2    Ajith, A.3
  • 24
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y. Liu, and X. Yao Ensemble learning via negative correlation Neural Netw. 12 1999 1399 1404
    • (1999) Neural Netw. , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 25
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.H. Zhou, J. Wu, and W. Tang Ensembling neural networks: many could be better than all Artif. Intell. 137 2002 239 263
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 28
    • 27944468843 scopus 로고    scopus 로고
    • Neural network ensembles: Combining multiple models for enhanced performance using a multistage approach
    • S. Yang, and A. Browne Neural network ensembles: combining multiple models for enhanced performance using a multistage approach Exp. Syst. 24 2004 279 288
    • (2004) Exp. Syst. , vol.24 , pp. 279-288
    • Yang, S.1    Browne, A.2
  • 29
    • 81755187275 scopus 로고    scopus 로고
    • ANN ensemble and output encoding scheme for improved transformer tap-changer operation
    • M.F. Islam, and J. Kamruzzaman ANN ensemble and output encoding scheme for improved transformer tap-changer operation IEEE PSCE 2006 1063 1068
    • (2006) IEEE PSCE , pp. 1063-1068
    • Islam, M.F.1    Kamruzzaman, J.2
  • 30
    • 34247481904 scopus 로고    scopus 로고
    • Sensitivity analysis and stability patterns of two-species pest models using artificial neural networks
    • Y.S. Park, J. Rabinovich, and S. Lek Sensitivity analysis and stability patterns of two-species pest models using artificial neural networks Ecol. Model. 204 2007 427 438
    • (2007) Ecol. Model. , vol.204 , pp. 427-438
    • Park, Y.S.1    Rabinovich, J.2    Lek, S.3
  • 31
    • 31544458715 scopus 로고    scopus 로고
    • Hazard rating of pine trees from a forest insect pest using artifical neural networks
    • Y.S. Park, and Y.J. Chung Hazard rating of pine trees from a forest insect pest using artifical neural networks For. Ecol. Manage. 222 2006 222 233
    • (2006) For. Ecol. Manage. , vol.222 , pp. 222-233
    • Park, Y.S.1    Chung, Y.J.2
  • 32
    • 0035506957 scopus 로고    scopus 로고
    • Sensitivity analysis of multilayer perceptron to input and weight perturbations
    • X. Zeng, and D.S. Yeung Sensitivity analysis of multilayer perceptron to input and weight perturbations IEEE Trans. Neural Netw. 12 2001 1358 1366
    • (2001) IEEE Trans. Neural Netw. , vol.12 , pp. 1358-1366
    • Zeng, X.1    Yeung, D.S.2
  • 33
    • 0028298271 scopus 로고
    • Medical aspects of the persistent vegetative state: Second of two parts
    • Multi-Society Task Force on PVS
    • Multi-Society Task Force on PVS Medical aspects of the persistent vegetative state: second of two parts N. Engl. J. Med. 330 1994 1572 1579
    • (1994) N. Engl. J. Med. , vol.330 , pp. 1572-1579
  • 34
    • 0015318539 scopus 로고
    • Persistent vegetative state after brain damage. A syndrome in search of a name
    • B. Jennet, and F. Plum Persistent vegetative state after brain damage. a syndrome in search of a name Lancet 1972 734 736
    • (1972) Lancet , pp. 734-736
    • Jennet, B.1    Plum, F.2
  • 35
    • 0027234384 scopus 로고
    • Medical futility, treatment withdrawal, and the persistent vegetative state
    • K. Mitchell, I. Kerridge, and T. Lovat Medical futility, treatment withdrawal, and the persistent vegetative state J. Med. Ethics 19 1993 71 76
    • (1993) J. Med. Ethics , vol.19 , pp. 71-76
    • Mitchell, K.1    Kerridge, I.2    Lovat, T.3
  • 36
    • 27944455584 scopus 로고    scopus 로고
    • The neural correlate of (un)awareness: Lessons from the vegetative state
    • S Laureys The neural correlate of (un)awareness: lessons from the vegetative state Trends Cogn. Sci. 12 2005 556 559
    • (2005) Trends Cogn. Sci. , vol.12 , pp. 556-559
    • Laureys, S.1
  • 37
    • 79952470468 scopus 로고    scopus 로고
    • Dominated EEG patterns and their prognostic value in coma caused by traumatic brain injury
    • M. Beridze, M. Khaburzania, R. Shakarishvili, and D. Kazaishvili Dominated EEG patterns and their prognostic value in coma caused by traumatic brain injury Georgian Med. News 186 September 2010 28 33
    • (2010) Georgian Med. News , vol.186 , pp. 28-33
    • Beridze, M.1    Khaburzania, M.2    Shakarishvili, R.3    Kazaishvili, D.4
  • 38
    • 33745930526 scopus 로고    scopus 로고
    • Sensitivity of transcranial doppler for confirming brain death: A prospective study of 270 cases
    • G.R. de Freitas, and C. Andre Sensitivity of transcranial doppler for confirming brain death: a prospective study of 270 cases Acta Neurol. Scand. 113 2006 426 432
    • (2006) Acta Neurol. Scand. , vol.113 , pp. 426-432
    • De Freitas, G.R.1    Andre, C.2
  • 41
    • 0003000735 scopus 로고
    • Faster-learning Variations on Back-propagation: An Empirical Study
    • S.E. Fahlman, Faster-learning Variations on Back-propagation: An Empirical Study, 1988: Proc. Morgan Kaufmann, p. 38.
    • (1988) Proc. Morgan Kaufmann , pp. 38
    • Fahlman, S.E.1
  • 42
    • 0028496580 scopus 로고
    • Weight smoothing to improve network generalization
    • J.S.N. Jean, and J. Wang Weight smoothing to improve network generalization IEEE Trans. Neural Netw. 5 1994 752 763
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 752-763
    • Jean, J.S.N.1    Wang, J.2
  • 43
    • 0032115118 scopus 로고    scopus 로고
    • Assessment of voltage stability margins using artificial neural networks with a reduced input set
    • D. Popovic, D. Kukolj, F. Kulic, and F. Monitoring Assessment of voltage stability margins using artificial neural networks with a reduced input set IEEE Proc. Generation Trans. 145 1998 355 362
    • (1998) IEEE Proc. Generation Trans. , vol.145 , pp. 355-362
    • Popovic, D.1    Kukolj, D.2    Kulic, F.3    Monitoring, F.4
  • 44
    • 1842722362 scopus 로고    scopus 로고
    • Multiscale entropy analysis of complex physiologic time series
    • 068102 (1-4)
    • M. Costa, A.L. Goldberger, and C.K. Peng Multiscale entropy analysis of complex physiologic time series Phys. Rev. Lett. 89 2002 068102 (1-4)
    • (2002) Phys. Rev. Lett. , vol.89
    • Costa, M.1    Goldberger, A.L.2    Peng, C.K.3
  • 46
    • 0038137168 scopus 로고    scopus 로고
    • Linguistic analysis of the human heartbeat using frequency and rank order statistics
    • 108103 (1-4)
    • A.C.C. Yang, S.S. Hseu, H.W. Yien, A.L. Goldberger, and C.K. Peng Linguistic analysis of the human heartbeat using frequency and rank order statistics Phys. Rev. Lett. 90 2003 108103 (1-4)
    • (2003) Phys. Rev. Lett. , vol.90
    • Yang, A.C.C.1    Hseu, S.S.2    Yien, H.W.3    Goldberger, A.L.4    Peng, C.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.