메뉴 건너뛰기




Volumn 11, Issue 3, 2015, Pages 447-456

Biomineralization of natural collagenous nanofibrous membranes and their potential use in bone tissue engineering

Author keywords

Biomineralization; Collagen; Hydroxyapatite; Stem cells; Tissue engineering

Indexed keywords

BIOCOMPATIBILITY; BIOMINERALIZATION; BONE; CELL CULTURE; CELL ENGINEERING; COLLAGEN; HYDROXYAPATITE; MEMBRANES; NANOFIBERS; SCAFFOLDS (BIOLOGY); STEM CELLS; TISSUE ENGINEERING;

EID: 84918594005     PISSN: 15507033     EISSN: 15507041     Source Type: Journal    
DOI: 10.1166/jbn.2015.2038     Document Type: Article
Times cited : (34)

References (60)
  • 1
    • 4544273208 scopus 로고    scopus 로고
    • Bone tissue engineering: State of the art and future trends
    • A. J. Salgado, O. P. Coutinho, and R. L. Reis, Bone tissue engineering: State of the art and future trends. Macromol. Biosci. 4, 743 (2004).
    • (2004) Macromol. Biosci. , vol.4 , pp. 743
    • Salgado, A.J.1    Coutinho, O.P.2    Reis, R.L.3
  • 2
    • 10844277457 scopus 로고    scopus 로고
    • Bone repair in the twenty-first century biology, chemistry or engineering?
    • K. A. Hing, Bone repair in the twenty-first century biology, chemistry or engineering?. Phil. Trans. R. Soc. Lond. A 362, 2821 (2004).
    • (2004) Phil. Trans. R. Soc. Lond. A , vol.362 , pp. 2821
    • Hing, K.A.1
  • 3
    • 0036277288 scopus 로고    scopus 로고
    • The potential of biomimetics in bone tissue engineering: Lessons from the design and synthesis of invertebrate skeletons
    • D. Green, D. Walsh, S. Mann, and R. O. Oreffo, The potential of biomimetics in bone tissue engineering: Lessons from the design and synthesis of invertebrate skeletons. Bone 30, 810 (2002).
    • (2002) Bone , vol.30 , pp. 810
    • Green, D.1    Walsh, D.2    Mann, S.3    Oreffo, R.O.4
  • 5
    • 18244366662 scopus 로고    scopus 로고
    • Tissue engineering: Current challenges and expanding opportunities
    • L. G. Griffith and G. Naughton, Tissue engineering: Current challenges and expanding opportunities. Science 295, 1009 (2002).
    • (2002) Science , vol.295 , pp. 1009
    • Griffith, L.G.1    Naughton, G.2
  • 6
    • 0035941074 scopus 로고    scopus 로고
    • Self-Assembly and mineralization of peptide-Amphiphile nanofibers
    • J. D. Hartgerink, E. Beniash, and S. I. Stupp, Self-Assembly and mineralization of peptide-Amphiphile nanofibers. Science 294, 1684 (2001).
    • (2001) Science , vol.294 , pp. 1684
    • Hartgerink, J.D.1    Beniash, E.2    Stupp, S.I.3
  • 7
    • 79952470487 scopus 로고    scopus 로고
    • Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration
    • J. Venugopal, V. R. Giri Dev, T. Senthilram, and S. Ramakrishna, Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration. Cell Biol. Int. 35, 73 (2011).
    • (2011) Cell Biol. Int. , vol.35 , pp. 73
    • Venugopal, J.1    Giri Dev, V.R.2    Senthilram, T.3    Ramakrishna, S.4
  • 8
    • 84891643059 scopus 로고    scopus 로고
    • Aloe vera/silk fibroin/hydroxyapatite incorporated electrospun nanofibrous scaffold for enhanced osteogenesis
    • S. Suganya, J. Venugopal, B. Lakshmi, S. Ramakrishna, and V. R. Giri Dev, Aloe vera/silk fibroin/hydroxyapatite incorporated electrospun nanofibrous scaffold for enhanced osteogenesis. J. Biomater. Appl. 4, 9 (2014).
    • (2014) J. Biomater. Appl. , vol.4 , pp. 9
    • Suganya, S.1    Venugopal, J.2    Lakshmi, B.3    Ramakrishna, S.4    Giri Dev, V.R.5
  • 9
    • 84905566469 scopus 로고    scopus 로고
    • Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds
    • DOI: 10.1002/adma.201400154
    • J. Wang, M. Yang, Y. Zhu, L. Wang, A. P. Tomsia, and C. B. Mao, Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds. Adv. Mater. (2014), DOI: 10.1002/adma.201400154.
    • (2014) Adv. Mater.
    • Wang, J.1    Yang, M.2    Zhu, Y.3    Wang, L.4    Tomsia, A.P.5    Mao, C.B.6
  • 10
    • 0031638368 scopus 로고    scopus 로고
    • The material bone: Structuremechanical function relations
    • S. Weiner and H. D. Wagner, The material bone: Structuremechanical function relations. Annu. Rev. Mater. Sci. 28, 271 (1998).
    • (1998) Annu. Rev. Mater. Sci. , vol.28 , pp. 271
    • Weiner, S.1    Wagner, H.D.2
  • 12
    • 14644413519 scopus 로고    scopus 로고
    • Supramolecular assembly of amelogenin nanospheres into birefringent microribbons
    • C. Du, G. Falini, S. Fermani, C. Abbott, and J. Moradian-Oldak, Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science 307, 1450 (2005).
    • (2005) Science , vol.307 , pp. 1450
    • Du, C.1    Falini, G.2    Fermani, S.3    Abbott, C.4    Moradian-Oldak, J.5
  • 13
    • 13644269684 scopus 로고    scopus 로고
    • Nanobiotechnology: Implications for the future of nanotechnology in orthopedic applications
    • M. Sato and T. J. Webster, Nanobiotechnology: Implications for the future of nanotechnology in orthopedic applications. Expert Rev. Med. Devices 1, 105 (2004).
    • (2004) Expert Rev. Med. Devices , vol.1 , pp. 105
    • Sato, M.1    Webster, T.J.2
  • 17
    • 0031593898 scopus 로고    scopus 로고
    • Small intestional submucosa: A rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model
    • S. F. Badylak, B. Kropp, T. McPherson, H. Liang, and P. W. Snyder, Small intestional submucosa: A rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model. Tissue Eng. 4, 379 (1998).
    • (1998) Tissue Eng. , vol.4 , pp. 379
    • Badylak, S.F.1    Kropp, B.2    McPherson, T.3    Liang, H.4    Snyder, P.W.5
  • 18
    • 33745611539 scopus 로고    scopus 로고
    • In vivo bladder regeneration using small intestinal submucosa: Experimental study
    • P. Caione, N. Capozza, D. Zavaglia, G. Palombaro, and R. Boldrini, In vivo bladder regeneration using small intestinal submucosa: Experimental study. Pediatr. Surg. Int. 22, 593 (2006).
    • (2006) Pediatr. Surg. Int. , vol.22 , pp. 593
    • Caione, P.1    Capozza, N.2    Zavaglia, D.3    Palombaro, G.4    Boldrini, R.5
  • 21
    • 0345601109 scopus 로고    scopus 로고
    • Body wall repair using small intestinal submucosa seeded with cells
    • J. Y. Lai, P. Y. Chang, and J. N. Lin, Body wall repair using small intestinal submucosa seeded with cells. J. Surg. Res. 38, 1752 (2003).
    • (2003) J. Surg. Res. , vol.38 , pp. 1752
    • Lai, J.Y.1    Chang, P.Y.2    Lin, J.N.3
  • 23
    • 0034900748 scopus 로고    scopus 로고
    • Small bowel tissue engineering using small intestinal submucosa as a scaffold
    • M. K. Chen and S. F. Badylak, Small bowel tissue engineering using small intestinal submucosa as a scaffold. J. Surg. Res. 99, 352 (2001).
    • (2001) J. Surg. Res. , vol.99 , pp. 352
    • Chen, M.K.1    Badylak, S.F.2
  • 25
    • 0346399752 scopus 로고    scopus 로고
    • The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament-A functional tissue engineering study in rabbits
    • V. Musahl, S. D. Abramowitch, T. W. Gilbert, E. Tsuda, J. H. Wang, S. F. Badylak, and S. L. Woo, The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament-A functional tissue engineering study in rabbits. J. Orthop. Res. 22, 214 (2004).
    • (2004) J. Orthop. Res. , vol.22 , pp. 214
    • Musahl, V.1    Abramowitch, S.D.2    Gilbert, T.W.3    Tsuda, E.4    Wang, J.H.5    Badylak, S.F.6    Woo, S.L.7
  • 26
    • 0035263106 scopus 로고    scopus 로고
    • Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa
    • J. A. Gastel, W. R. Muirhead, J. T. Lifrak, P. D. Fadale, M. J. Hulstyn, and D. P. Labrador, Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa. Arthroscopy 17, 151 (2001).
    • (2001) Arthroscopy , vol.17 , pp. 151
    • Gastel, J.A.1    Muirhead, W.R.2    Lifrak, J.T.3    Fadale, P.D.4    Hulstyn, M.J.5    Labrador, D.P.6
  • 27
    • 0024346484 scopus 로고
    • Small intestinal submucosa as a large diameter vascular graft in the dog
    • S. F. Badylak, G. C. Lantz, A. Coffey, and L. A. Geddes, Small intestinal submucosa as a large diameter vascular graft in the dog. J. Surg. Res. 47, 74 (1989).
    • (1989) J. Surg. Res. , vol.47 , pp. 74
    • Badylak, S.F.1    Lantz, G.C.2    Coffey, A.3    Geddes, L.A.4
  • 31
    • 84867402383 scopus 로고    scopus 로고
    • Nanophase hydroxyapatite and poly(lactide-co-glycolide) composites promote human mesenchymal stem cell adhesion and osteogenic differentiation in vitro
    • J. Lock, T. Y. Nguyen, and H. Liu, Nanophase hydroxyapatite and poly(lactide-co-glycolide) composites promote human mesenchymal stem cell adhesion and osteogenic differentiation in vitro. J. Mater. Sci. Mater. Med. 23, 2543 (2012).
    • (2012) J. Mater. Sci. Mater. Med. , vol.23 , pp. 2543
    • Lock, J.1    Nguyen, T.Y.2    Liu, H.3
  • 35
    • 0035875977 scopus 로고    scopus 로고
    • The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour
    • P. A. Ramires, A. Romito, F. Cosentino, and E. Milella, The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials 22, 1467 (2001).
    • (2001) Biomaterials , vol.22 , pp. 1467
    • Ramires, P.A.1    Romito, A.2    Cosentino, F.3    Milella, E.4
  • 36
    • 0019367666 scopus 로고
    • Remineralization of natural and artificial lesions in human dental enamel in vitro. Effect of calcium concentration of the calcifying fluid
    • L.M. Silverstone, J. S. Wefel, B. F. Zimmerman, B. H. Clarkson and M. J. Featherstone, Remineralization of natural and artificial lesions in human dental enamel in vitro. Effect of calcium concentration of the calcifying fluid. Caries Res. 15, 138 (1981).
    • (1981) Caries Res. , vol.15 , pp. 138
    • Silverstone, L.M.1    Wefel, J.S.2    Zimmerman, B.F.3    Clarkson, B.H.4    Featherstone, M.J.5
  • 37
    • 0033321395 scopus 로고    scopus 로고
    • Oriented growth of phosphates on polycrystalline titanium in a process mimicking biomineralization
    • C. B. Mao, H. Li, F. Cui, Q. Feng, and C. Ma, Oriented growth of phosphates on polycrystalline titanium in a process mimicking biomineralization. J. Crystal Growth 206, 308 (1999).
    • (1999) J. Crystal Growth , vol.206 , pp. 308
    • Mao, C.B.1    Li, H.2    Cui, F.3    Feng, Q.4    Ma, C.5
  • 38
    • 0032723804 scopus 로고    scopus 로고
    • The functionalization of titanium with EDTA to induce biomimetic mineralization of hydroxyapatite
    • C. B. Mao, H. Li, F. Cui, Q. F., and C. Ma, The functionalization of titanium with EDTA to induce biomimetic mineralization of hydroxyapatite. J. Mater. Chem. 9, 2573 (1999).
    • (1999) J. Mater. Chem. , vol.9 , pp. 2573
    • Mao, C.B.1    Li, H.2    Cui, F.Q.F.3    Ma, C.4
  • 39
    • 0000817504 scopus 로고    scopus 로고
    • Oriented growth of hydroxyapatite on (0001) textured titanium with functionalized self-Assembled silane monolayer as template
    • C. B. Mao, H. Li, F. Cui, Q. Feng, H. Wang, and C. Ma, Oriented growth of hydroxyapatite on (0001) textured titanium with functionalized self-Assembled silane monolayer as template. J. Mater. Chem. 8, 2795 (1998).
    • (1998) J. Mater. Chem. , vol.8 , pp. 2795
    • Mao, C.B.1    Li, H.2    Cui, F.3    Feng, Q.4    Wang, H.5    Ma, C.6
  • 40
    • 79958774031 scopus 로고    scopus 로고
    • Self-Assembly and mineralization of genetically modifiable biological nanofibers driven by beta-structure formation
    • H. Xu, B. Cao, A. George, and C. B. Mao, Self-Assembly and mineralization of genetically modifiable biological nanofibers driven by beta-structure formation. Biomacromolecules 12, 2193 (2011).
    • (2011) Biomacromolecules , vol.12 , pp. 2193
    • Xu, H.1    Cao, B.2    George, A.3    Mao, C.B.4
  • 41
    • 84934444855 scopus 로고    scopus 로고
    • Chapter 10: Phage as a template to grow bone mineral nanocrystals. Virus hybrids as nanomaterials
    • edited by B. Ratna and B. Lin, Humana Press, USA
    • B. Cao and C. B. Mao, Chapter 10: Phage as a template to grow bone mineral nanocrystals. Virus hybrids as nanomaterials, Methods in Molecular Biology, edited by B. Ratna and B. Lin, Humana Press, USA (2014), Vol. 1108, pp. 123-135.
    • (2014) Methods in Molecular Biology , vol.1108 , pp. 123-135
    • Cao, B.1    Mao, C.B.2
  • 42
    • 84863933153 scopus 로고    scopus 로고
    • Morphology-controlled synthesis of silica nanotubes through pHand sequence-responsive morphological change of bacterial flagellar biotemplates
    • D. Li, X. Qu, S. M. C. Newton, P. E. Klebba, and C. B. Mao, Morphology-controlled synthesis of silica nanotubes through pHand sequence-responsive morphological change of bacterial flagellar biotemplates. J. Mater. Chem. 22, 15702 (2012).
    • (2012) J. Mater. Chem. , vol.22 , pp. 15702
    • Li, D.1    Qu, X.2    Newton, S.M.C.3    Klebba, P.E.4    Mao, C.B.5
  • 43
    • 35448949039 scopus 로고    scopus 로고
    • Oriented nucleation of hydroxylapatite crystals on spider dragline silks
    • B. Cao and C. B. Mao, Oriented nucleation of hydroxylapatite crystals on spider dragline silks. Langmuir 23, 10701 (2007).
    • (2007) Langmuir , vol.23 , pp. 10701
    • Cao, B.1    Mao, C.B.2
  • 44
    • 79955778831 scopus 로고    scopus 로고
    • Controlled growth and differentiation of mesenchymal stem cells on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries
    • H. Zhu, B. Cao, Z. Zhen, A. Laxmi, D. Li, S. Liu, and C. B. Mao, Controlled growth and differentiation of mesenchymal stem cells on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries. Biomaterials 32, 4744 (2011).
    • (2011) Biomaterials , vol.32 , pp. 4744
    • Zhu, H.1    Cao, B.2    Zhen, Z.3    Laxmi, A.4    Li, D.5    Liu, S.6    Mao, C.B.7
  • 45
    • 0035984715 scopus 로고    scopus 로고
    • Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression
    • S. Shi, S. Gronthos, S. Chen, A. Reddi, C. M. Counter, P. G. Robey, and C.-Y. Wang, Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nature Biotechnol. 20, 587 (2002).
    • (2002) Nature Biotechnol. , vol.20 , pp. 587
    • Shi, S.1    Gronthos, S.2    Chen, S.3    Reddi, A.4    Counter, C.M.5    Robey, P.G.6    Wang, C.-Y.7
  • 46
    • 9644303269 scopus 로고    scopus 로고
    • Bone tissue engineering on patterned collagen films: An in vitro study
    • S. Bera, G. T. K. Seb, and V. Hasirci, Bone tissue engineering on patterned collagen films: An in vitro study. Biomaterials 26, 1997 (2005).
    • (2005) Biomaterials , vol.26 , pp. 1997
    • Bera, S.1    Seb, G.T.K.2    Hasirci, V.3
  • 47
    • 4444263807 scopus 로고    scopus 로고
    • Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells
    • N. Datta, H. L. Holtorf, V. I. Sikavitsas, J. A. Jansen, and A. G. Mikos, Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials 26, 971 (2005).
    • (2005) Biomaterials , vol.26 , pp. 971
    • Datta, N.1    Holtorf, H.L.2    Sikavitsas, V.I.3    Jansen, J.A.4    Mikos, A.G.5
  • 48
    • 84873664746 scopus 로고    scopus 로고
    • Virus activated artificial ECM induces the osteogenic differentiation of mesenchymal stem cells without osteogenic supplements
    • J. Wang, L. Wang, X. Li, and C. B. Mao, Virus activated artificial ECM induces the osteogenic differentiation of mesenchymal stem cells without osteogenic supplements. Sci. Rep. 3, 1242 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 1242
    • Wang, J.1    Wang, L.2    Li, X.3    Mao, C.B.4
  • 49
    • 84898646492 scopus 로고    scopus 로고
    • Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells
    • M. Yang, Y. Shuai, C. Zhang, Y. Chen, L. Zhu, C. B. Mao, and H. O. Yang, Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Biomacromolecules 15, 1185 (2014).
    • (2014) Biomacromolecules , vol.15 , pp. 1185
    • Yang, M.1    Shuai, Y.2    Zhang, C.3    Chen, Y.4    Zhu, L.5    Mao, C.B.6    Yang, H.O.7
  • 51
    • 0027973996 scopus 로고
    • Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy
    • S. P. Bruder, D. J. Fink, and A. I. Caplan, Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J. Cell Biochem. 56, 283 (1994).
    • (1994) J. Cell Biochem. , vol.56 , pp. 283
    • Bruder, S.P.1    Fink, D.J.2    Caplan, A.I.3
  • 52
    • 0026537256 scopus 로고
    • Concepts of osteoblast growth and differentiation: Basis for modulation of bone cell development and tissue formation
    • J. B. Lian and G. S. Stein, Concepts of osteoblast growth and differentiation: Basis for modulation of bone cell development and tissue formation. Crit. Rev. Oral Biol. Med. 3, 269 (1992).
    • (1992) Crit. Rev. Oral Biol. Med. , vol.3 , pp. 269
    • Lian, J.B.1    Stein, G.S.2
  • 53
    • 81155152755 scopus 로고    scopus 로고
    • Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage
    • R. Ravichandran, J. Venugopal, S. Mukherjee, and S. Ramakrishna, Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials 33, 846 (2012).
    • (2012) Biomaterials , vol.33 , pp. 846
    • Ravichandran, R.1    Venugopal, J.2    Mukherjee, S.3    Ramakrishna, S.4
  • 54
    • 84875363328 scopus 로고    scopus 로고
    • Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis
    • J. Venugopal, R. Rajeswari, M. Shayanti, and S. Ramakrishna, Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis. J. Biomater. Sci. Polym. Ed. 24, 170 (2013).
    • (2013) J. Biomater. Sci. Polym. Ed. , vol.24 , pp. 170
    • Venugopal, J.1    Rajeswari, R.2    Shayanti, M.3    Ramakrishna, S.4
  • 55
    • 77953344951 scopus 로고    scopus 로고
    • Enhanced biomineralization of osteoblasts on a novel electrospun biocomposite nanofibrous scaffold of hydroxyapatite/collagen/chitosan
    • Y. Z. Zhang, J. R. Venugopal, S. Ramakrishna, and C. T. Lim, Enhanced biomineralization of osteoblasts on a novel electrospun biocomposite nanofibrous scaffold of hydroxyapatite/collagen/chitosan. Tissue Eng. A 16, 1949 (2010).
    • (2010) Tissue Eng. A , vol.16 , pp. 1949
    • Zhang, Y.Z.1    Venugopal, J.R.2    Ramakrishna, S.3    Lim, C.T.4
  • 56
    • 34249889877 scopus 로고    scopus 로고
    • Review: Mineralization of synthetic polymer scaffolds for bone tissue engineering
    • J. D. Kretlow and A. G. Mikos, Review: Mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng. 13, 927 (2007).
    • (2007) Tissue Eng. , vol.13 , pp. 927
    • Kretlow, J.D.1    Mikos, A.G.2
  • 57
    • 0031553836 scopus 로고    scopus 로고
    • Surface functional group dependence on apatite formation on self-Assembled monolayers in a simulated body fluid
    • M. Tanahashi and T. Matsuda, Surface functional group dependence on apatite formation on self-Assembled monolayers in a simulated body fluid. J. Biomed. Mater. Res. 34, 305 (1997).
    • (1997) J. Biomed. Mater. Res. , vol.34 , pp. 305
    • Tanahashi, M.1    Matsuda, T.2
  • 59
    • 14844352171 scopus 로고    scopus 로고
    • Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures
    • H. A. Declercq, R. M. Verbeeck, L. I. De Ridder, E. H. Schacht, and M. J. Cornelissen, Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures. Biomaterials 26, 4964 (2005).
    • (2005) Biomaterials , vol.26 , pp. 4964
    • Declercq, H.A.1    Verbeeck, R.M.2    De Ridder, L.I.3    Schacht, E.H.4    Cornelissen, M.J.5
  • 60
    • 84869084190 scopus 로고    scopus 로고
    • Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-Template-induced biomimetic bone substitutes
    • J. Wang, Q. Yang, C. B. Mao, and S. Zhang, Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-Template-induced biomimetic bone substitutes. J. Biomed. Mater. Res. A. 100, 2929 (2012).
    • (2012) J. Biomed. Mater. Res. A. , vol.100 , pp. 2929
    • Wang, J.1    Yang, Q.2    Mao, C.B.3    Zhang, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.