-
1
-
-
76449092104
-
-
NPAHAX 1745-2473
-
T. Zhang, Nat. Phys. 6, 104 (2010). NPAHAX 1745-2473 10.1038/nphys1499
-
(2010)
Nat. Phys.
, vol.6
, pp. 104
-
-
Zhang, T.1
-
2
-
-
81055126965
-
-
PRLTAO 0031-9007
-
T. Uchihashi, P. Mishra, M. Aono, and T. Nakayama, Phys. Rev. Lett. 107, 207001 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.207001
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 207001
-
-
Uchihashi, T.1
Mishra, P.2
Aono, M.3
Nakayama, T.4
-
5
-
-
84901981997
-
-
NPAHAX 1745-2473
-
C. Brun, Nat. Phys. 10, 444 (2014). NPAHAX 1745-2473 10.1038/nphys2937
-
(2014)
Nat. Phys.
, vol.10
, pp. 444
-
-
Brun, C.1
-
7
-
-
66749117882
-
-
SCIEAS 0036-8075
-
S.Y. Qin, J. Kim, Q. Niu, and C.K. Shih, Science 324, 1314 (2009). SCIEAS 0036-8075 10.1126/science.1170775
-
(2009)
Science
, vol.324
, pp. 1314
-
-
Qin S, Y.1
Kim, J.2
Niu, Q.3
Shih C, K.4
-
8
-
-
84863230639
-
-
CPLEEU 0256-307X
-
Q.-Y. Wang, Chin. Phys. Lett. 29, 037402 (2012). CPLEEU 0256-307X 10.1088/0256-307X/29/3/037402
-
(2012)
Chin. Phys. Lett.
, vol.29
, pp. 037402
-
-
Wang, Q.-Y.1
-
10
-
-
28844465490
-
-
PRLTAO 0031-9007
-
C. Tegenkamp, Z. Kallassy, H. Pfnur, H.L. Gunter, V. Zielasek, and M. Henzler, Phys. Rev. Lett. 95, 176804 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.176804
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 176804
-
-
Tegenkamp, C.1
Kallassy, Z.2
Pfnur, H.3
Gunter H, L.4
Zielasek, V.5
Henzler, M.6
-
11
-
-
79952594679
-
-
PRLTAO 0031-9007
-
S. Yamazaki, Y. Hosomura, I. Matsuda, R. Hobara, T. Eguchi, Y. Hasegawa, and S. Hasegawa, Phys. Rev. Lett. 106, 116802 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.116802
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 116802
-
-
Yamazaki, S.1
Hosomura, Y.2
Matsuda, I.3
Hobara, R.4
Eguchi, T.5
Hasegawa, Y.6
Hasegawa, S.7
-
13
-
-
0038774553
-
-
PRLTAO 0031-9007
-
Y. Hasegawa and P. Avouris, Phys. Rev. Lett. 71, 1071 (1993). PRLTAO 0031-9007 10.1103/PhysRevLett.71.1071
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 1071
-
-
Hasegawa, Y.1
Avouris, P.2
-
15
-
-
37649032759
-
-
PRLTAO 0031-9007
-
I. Matsuda, M. Ueno, T. Hirahara, R. Hobara, H. Morikawa, C.H. Liu, and S. Hasegawa, Phys. Rev. Lett. 93, 236801 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.93.236801
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 236801
-
-
Matsuda, I.1
Ueno, M.2
Hirahara, T.3
Hobara, R.4
Morikawa, H.5
Liu C, H.6
Hasegawa, S.7
-
16
-
-
0034895234
-
-
PRBMDO 0163-1829
-
V.G. Kogan, V.V. Dobrovitski, J.R. Clem, Y. Mawatari, and R.G. Mints, Phys. Rev. B 63, 144501 (2001). PRBMDO 0163-1829 10.1103/PhysRevB.63.144501
-
(2001)
Phys. Rev. B
, vol.63
, pp. 144501
-
-
Kogan, G.1
Dobrovitski, V.2
Clem J, R.3
Mawatari, Y.4
Mints R, G.5
-
18
-
-
54849407832
-
-
PRLTAO 0031-9007
-
T. Nishio, Phys. Rev. Lett. 101, 167001 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.101.167001
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 167001
-
-
Nishio, T.1
-
20
-
-
0942300755
-
-
PRLTAO 0031-9007
-
E. Rotenberg, H. Koh, K. Rossnagel, H.W. Yeom, J. Schäfer, B. Krenzer, M.P. Rocha, and S.D. Kevan, Phys. Rev. Lett. 91, 246404 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.91.246404
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 246404
-
-
Rotenberg, E.1
Koh, H.2
Rossnagel, K.3
Yeom H, W.4
Schäfer, J.5
Krenzer, B.6
Rocha M, P.7
Kevan S, D.8
-
21
-
-
0000434707
-
-
PRLTAO 0031-9007
-
H.F. Hess, R.B. Robinson, R.C. Dynes, J.J.M. Valles, and J.V. Waszczak, Phys. Rev. Lett. 62, 214 (1989). PRLTAO 0031-9007 10.1103/PhysRevLett.62.214
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 214
-
-
Hess H, F.1
Robinson R, B.2
Dynes R, C.3
Valles J, J.M.4
Waszczak J, V.5
-
22
-
-
84878559608
-
-
PRBMDO 1098-0121
-
T. Tominaga, T. Sakamoto, H. Kim, T. Nishio, T. Eguchi, and Y. Hasegawa, Phys. Rev. B 87, 195434 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.195434
-
(2013)
Phys. Rev. B
, vol.87
, pp. 195434
-
-
Tominaga, T.1
Sakamoto, T.2
Kim, H.3
Nishio, T.4
Eguchi, T.5
Hasegawa, Y.6
-
25
-
-
20444495430
-
-
APPLAB 0003-6951
-
J. Pearl, Appl. Phys. Lett. 5, 65 (1964). APPLAB 0003-6951 10.1063/1.1754056
-
(1964)
Appl. Phys. Lett.
, vol.5
, pp. 65
-
-
Pearl, J.1
-
26
-
-
2542447644
-
-
PRLTAO 0031-9007
-
F. Tafuri, J.R. Kirtley, P.G. Medaglia, P. Orgiani, and G. Balestrino, Phys. Rev. Lett. 92, 157006 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.92.157006
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 157006
-
-
Tafuri, F.1
Kirtley J, R.2
Medaglia P, G.3
Orgiani, P.4
Balestrino, G.5
-
27
-
-
85000142544
-
-
For a 2D superconductor with a thickness (Equation presented), the characteristic length governing the magnetic field distribution is given by Pearl length (Equation presented), where (Equation presented) is London penetration depth. The vortices interact with each other like (Equation presented) as long as (Equation presented). The vortex is then called the Pearl vortex instead of the Abrikosov vortex in a three-dimensional (3D) superconductor, but their core structures are essentially the same. The magnetic flux size of a Pearl vortex is given by (Equation presented), which is estimated to be as large as 4.4 mm here. Since the magnetic field distribution is considered to be uniform, it does not affect the structure of a vortex core (See Sec. 1 of Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.113.247004, which includes Ref. [41]).
-
-
-
-
28
-
-
84918525802
-
-
See Supplemental Material at, Sec. 2.
-
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.113.247004, Sec. 2.
-
-
-
-
29
-
-
12044251389
-
-
RMPHAT 0034-6861
-
G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994). RMPHAT 0034-6861 10.1103/RevModPhys.66.1125
-
(1994)
Rev. Mod. Phys.
, vol.66
, pp. 1125
-
-
Blatter, G.1
Feigel'Man M, V.2
Geshkenbein, B.3
Larkin A, I.4
Vinokur, M.5
-
31
-
-
84872938107
-
-
NMAACR 1476-1122
-
P.J.W. Moll, L. Balicas, V. Geshkenbein, G. Blatter, J. Karpinski, N.D. Zhigadlo, and B. Batlogg, Nat. Mater. 12, 134 (2013). NMAACR 1476-1122 10.1038/nmat3489
-
(2013)
Nat. Mater.
, vol.12
, pp. 134
-
-
Moll P, J.W.1
Balicas, L.2
Geshkenbein, V.3
Blatter, G.4
Karpinski, J.5
Zhigadlo N, D.6
Batlogg, B.7
-
32
-
-
0000164338
-
-
PRBMDO 0163-1829
-
In a 3D system, the transition from Abrikosov to Josephson vortex occurs when the elongated core size exceeds the London penetration depth (Equation presented) [A. Gurevich, Phys. Rev. B 46, 3187 (1992)]. In the present 2D system, vortices at junctions are quite different since the problem involves a nonlocal equation as opposed to the local sine-Gordon equation in the 3D case [16]. Hence, this definition is not applicable here. PRBMDO 0163-1829 10.1103/PhysRevB.46.3187
-
(1992)
Phys. Rev. B
, vol.46
, pp. 3187
-
-
Gurevich, A.1
-
37
-
-
84918525802
-
-
See Sec. 3 of Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.113.247004, which includes Ref. [40].
-
-
-
-
39
-
-
84918525802
-
-
See Sec. 4 of Supplemental Material at, which includes Ref. [42].
-
See Sec. 4 of Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.113.247004, which includes Ref. [42].
-
-
-
|