메뉴 건너뛰기




Volumn 1260, Issue , 2015, Pages 195-204

Application of artificial neural networks in computer- aided diagnosis

Author keywords

Artificial neural network (ANN); CAD; Mammogram; Medical image; Receiver operating characteristic (ROC)

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPUTER ASSISTED DIAGNOSIS; IMAGE PROCESSING; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; ALGORITHM; BREAST DISEASES; DIFFERENTIAL DIAGNOSIS; HUMAN; MAMMOGRAPHY; PROCEDURES; STATISTICAL MODEL;

EID: 84917675909     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4939-2239-0_12     Document Type: Article
Times cited : (1)

References (32)
  • 1
    • 84855557868 scopus 로고    scopus 로고
    • A systematic review of computer-aided diagnosis in diagnostic cancer imaging
    • Eadie LH, Taylor P, Gibson AP (2012) A systematic review of computer-aided diagnosis in diagnostic cancer imaging. Eur J Radiol 81: e70–e76
    • (2012) Eur J Radiol , vol.81 , pp. e70-e76
    • Eadie, L.H.1    Taylor, P.2    Gibson, A.P.3
  • 2
    • 0030048533 scopus 로고    scopus 로고
    • Artificial neural network: Improving the quality of breast biopsy recommendations
    • Baker JA, Kornguth PJ, Lo JY et al (1996) Artificial neural network: improving the quality of breast biopsy recommendations. Radiology 198:131–135
    • (1996) Radiology , vol.198 , pp. 131-135
    • Baker, J.A.1    Kornguth, P.J.2    Lo, J.Y.3
  • 3
    • 0030996609 scopus 로고    scopus 로고
    • Computerized classification of malignant and benign microcalcifi cations on mammograms: Texture analysis using an artifi cial neural network
    • Chan H, Sahiner B, Petrick N et al (1997) Computerized classification of malignant and benign microcalcifi cations on mammograms: texture analysis using an artifi cial neural network. Phys Med Biol 42:549–567
    • (1997) Phys Med Biol , vol.42 , pp. 549-567
    • Chan, H.1    Sahiner, B.2    Petrick, N.3
  • 4
    • 0032890770 scopus 로고    scopus 로고
    • Improving breast cancer diagnosis with computer-aided diagnosis
    • Jiang Y, Nishikawa RM, Schmidt RA et al (1999) Improving breast cancer diagnosis with computer-aided diagnosis. Acad Radiol 6: 22–33
    • (1999) Acad Radiol , vol.6 , pp. 22-33
    • Jiang, Y.1    Nishikawa, R.M.2    Schmidt, R.A.3
  • 5
    • 0036316503 scopus 로고    scopus 로고
    • Breast cancer: Effectiveness of computer-aided diagnosis—observer study with independent database of mammograms
    • Huo Z, Giger ML, Vyborny CJ et al (2002) Breast cancer: effectiveness of computer-aided diagnosis—observer study with independent database of mammograms. Radiology 224: 560–568
    • (2002) Radiology , vol.224 , pp. 560-568
    • Huo, Z.1    Giger, M.L.2    Vyborny, C.J.3
  • 6
    • 25144514408 scopus 로고    scopus 로고
    • Computer-aided diagnosis scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artifi cial neural network
    • Suzuki K, Li F, Sone S et al (2005) Computer-aided diagnosis scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artifi cial neural network. IEEE Trans Med Imaging 24:1138–1150
    • (2005) IEEE Trans Med Imaging , vol.24 , pp. 1138-1150
    • Suzuki, K.1    Li, F.2    Sone, S.3
  • 7
    • 0001595997 scopus 로고
    • Neural network classifi ers estimate Bayesian a posteriori probabilities
    • Richard HH, Lippman RP (1991) Neural network classifi ers estimate Bayesian a posteriori probabilities. Neural Comput 3:461–483
    • (1991) Neural Comput , vol.3 , pp. 461-483
    • Richard, H.H.1    Lippman, R.P.2
  • 10
    • 33847254440 scopus 로고    scopus 로고
    • Independent evaluation of computer classifi cation of malignant and benign calcifi cations in full-fi eld digital mammograms
    • Rana RS, Jiang Y, Schmidt RA et al (2007) Independent evaluation of computer classifi cation of malignant and benign calcifi cations in full-fi eld digital mammograms. Acad Radiol 14:363–370
    • (2007) Acad Radiol , vol.14 , pp. 363-370
    • Rana, R.S.1    Jiang, Y.2    Schmidt, R.A.3
  • 11
    • 0018390029 scopus 로고
    • ROC analysis applied to the evaluation of medical imaging techniques
    • Swets JA (1978) ROC analysis applied to the evaluation of medical imaging techniques. Invest Radiol 14:109–121
    • (1978) Invest Radiol , vol.14 , pp. 109-121
    • Swets, J.A.1
  • 12
    • 0022470978 scopus 로고
    • ROC methodology in radio-logic imaging
    • Metz CE (1986) ROC methodology in radio-logic imaging. Invest Radiol 21:720–733
    • (1986) Invest Radiol , vol.21 , pp. 720-733
    • Metz, C.E.1
  • 13
    • 0022691293 scopus 로고
    • Forms of empirical ROCs in discrimination and diagnostic tasks: Implication for theory and measurement of performance
    • Swets JA (1986) Forms of empirical ROCs in discrimination and diagnostic tasks: implication for theory and measurement of performance. Psychol Bull 99:181–198
    • (1986) Psychol Bull , vol.99 , pp. 181-198
    • Swets, J.A.1
  • 14
    • 0023780330 scopus 로고
    • The robustness of the binor-mal assumption used in fi tting ROC curves
    • Hanley JA (1988) The robustness of the binor-mal assumption used in fi tting ROC curves. Med Decis Making 8:197–203
    • (1988) Med Decis Making , vol.8 , pp. 197-203
    • Hanley, J.A.1
  • 16
    • 4644282568 scopus 로고    scopus 로고
    • Radial gradient-based segmentation of mammographic microcalcifi cations: Observer evaluation and effect on CAD performance
    • Paquerault S, Yarusso LM, Papaioannou J et al (2004) Radial gradient-based segmentation of mammographic microcalcifi cations: observer evaluation and effect on CAD performance. Med Phys 31:2648–2657
    • (2004) Med Phys , vol.31 , pp. 2648-2657
    • Paquerault, S.1    Yarusso, L.M.2    Papaioannou, J.3
  • 17
    • 37549049420 scopus 로고    scopus 로고
    • Characterization of mammographic masses based on level set segmentation with new image features and patient information
    • Shi J, Sahiner B, Chan HP et al (2008) Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med Phys 35(1):280–290
    • (2008) Med Phys , vol.35 , Issue.1 , pp. 280-290
    • Shi, J.1    Sahiner, B.2    Chan, H.P.3
  • 18
    • 78650599059 scopus 로고    scopus 로고
    • Computer-aided classifi cation of breast masses: Performance and interobserver variability of expert radiologists versus residents
    • Singh S, Maxwell J, Baker JA et al (2011) Computer-aided classifi cation of breast masses: performance and interobserver variability of expert radiologists versus residents. Radiology 258:73–80
    • (2011) Radiology , vol.258 , pp. 73-80
    • Singh, S.1    Maxwell, J.2    Baker, J.A.3
  • 20
    • 75749099885 scopus 로고    scopus 로고
    • Effect of fi nite sample size on feature selection and classifi cation: A simulation study
    • Way TW, Sahiner B, Hadjiiski LM et al (2010) Effect of fi nite sample size on feature selection and classifi cation: a simulation study. Med Phys 37(2):907–920
    • (2010) Med Phys , vol.37 , Issue.2 , pp. 907-920
    • Way, T.W.1    Sahiner, B.2    Hadjiiski, L.M.3
  • 22
    • 0032525017 scopus 로고    scopus 로고
    • Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously distributed data
    • Metz CE, Herman BA, Shen JH (1998) Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously distributed data. Stat Med 17: 1033–1053
    • (1998) Stat Med , vol.17 , pp. 1033-1053
    • Metz, C.E.1    Herman, B.A.2    Shen, J.H.3
  • 23
    • 0037911226 scopus 로고    scopus 로고
    • The use of priori information in the detection of mammographic microcalcifications to improve their classification
    • Salfi ty MF, Nishikawa RM, Jiang Y et al (2003) The use of priori information in the detection of mammographic microcalcifications to improve their classification. Med Phys 30:823–831
    • (2003) Med Phys , vol.30 , pp. 823-831
    • Salfi Ty, M.F.1    Nishikawa, R.M.2    Jiang, Y.3
  • 24
    • 0007309779 scopus 로고    scopus 로고
    • A short proof of the posterior probability classifier neural networks
    • Rojas R (1996) A short proof of the posterior probability classifier neural networks. Neural Comput 8:41–43
    • (1996) Neural Comput , vol.8 , pp. 41-43
    • Rojas, R.1
  • 25
    • 84872046043 scopus 로고    scopus 로고
    • A multitarget training method for artificial neural network with application to computer-aided diagnosis
    • Liu B, Jiang Y (2013) A multitarget training method for artificial neural network with application to computer-aided diagnosis. Med Phys 40:011908. doi: 10.1118/1.4772021
    • (2013) Med Phys , pp. 40
    • Liu, B.1    Jiang, Y.2
  • 26
  • 27
    • 0030062375 scopus 로고    scopus 로고
    • Malignant and benign clustered micro-calcifi cations: Automated feature analysis and classifi cation
    • Jiang Y, Nishikawa RM, Wolverton DE et al (1996) Malignant and benign clustered micro-calcifi cations: automated feature analysis and classifi cation. Radiology 198:671–678
    • (1996) Radiology , vol.198 , pp. 671-678
    • Jiang, Y.1    Nishikawa, R.M.2    Wolverton, D.E.3
  • 28
    • 0031733057 scopus 로고    scopus 로고
    • Computerized analysis of mammographic microcalcifi cations in morphological and texture feature spaces
    • Chan H, Sahiner B, Lam KL et al (1998) Computerized analysis of mammographic microcalcifi cations in morphological and texture feature spaces. Med Phys 25:2007–2019
    • (1998) Med Phys , vol.25 , pp. 2007-2019
    • Chan, H.1    Sahiner, B.2    Lam, K.L.3
  • 29
    • 0035544614 scopus 로고    scopus 로고
    • Computerized analysis of multiple-mammographic views: Potential usefulness of special view mammograms in computer-aided diagnosis
    • Huo Z, Giger ML, Vyborny CJ (2001) Computerized analysis of multiple-mammographic views: potential usefulness of special view mammograms in computer-aided diagnosis. IEEE Trans Med Imaging 20: 1285–1292
    • (2001) IEEE Trans Med Imaging , vol.20 , pp. 1285-1292
    • Huo, Z.1    Giger, M.L.2    Vyborny, C.J.3
  • 30
    • 0026586270 scopus 로고
    • Gains in accuracy from replicated reading of diagnostic images: Prediction and assessment in terms of ROC analysis
    • Metz CE, Shen J (1992) Gains in accuracy from replicated reading of diagnostic images: prediction and assessment in terms of ROC analysis. Med Decis Making 12:60–75
    • (1992) Med Decis Making , vol.12 , pp. 60-75
    • Metz, C.E.1    Shen, J.2
  • 31
    • 4644353517 scopus 로고    scopus 로고
    • An ROC comparison of four methods of combining information from multiple images of the same patient
    • Liu B, Metz CE, Jiang Y (2004) An ROC comparison of four methods of combining information from multiple images of the same patient. Med Phys 31:2552–2563
    • (2004) Med Phys , vol.31 , pp. 2552-2563
    • Liu, B.1    Metz, C.E.2    Jiang, Y.3
  • 32
    • 28044464484 scopus 로고    scopus 로고
    • Effect of correlation on combining diagnostic information from two images of the same patient
    • Liu B, Metz CE, Jiang Y (2005) Effect of correlation on combining diagnostic information from two images of the same patient. Med Phys 32:3329–3338
    • (2005) Med Phys , vol.32 , pp. 3329-3338
    • Liu, B.1    Metz, C.E.2    Jiang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.