메뉴 건너뛰기




Volumn 17, Issue 12, 2013, Pages 595-610

Application of machine learning to proteomics data: Classification and biomarker identification in postgenomics biology

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 84888212150     PISSN: 15362310     EISSN: 15578100     Source Type: Journal    
DOI: 10.1089/omi.2013.0017     Document Type: Review
Times cited : (175)

References (101)
  • 1
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • Abeel T, Helleputte T, Van De Peer Y, Dupont P, and Saeys Y. (2010). Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26, 392-398.
    • (2010) Bioinformatics , vol.26 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    Van De Peer, Y.3    Dupont, P.4    Saeys, Y.5
  • 2
    • 0036645099 scopus 로고    scopus 로고
    • Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
    • Adam BL, Qu Y, Davis JW, et al. (2002). Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 62, 3609-3614.
    • (2002) Cancer Res , vol.62 , pp. 3609-3614
    • Adam, B.L.1    Qu, Y.2    Davis, J.W.3
  • 3
    • 0037435030 scopus 로고    scopus 로고
    • Mass spectrometry-based proteomics
    • Aebersold R, and Mann M. (2003). Mass spectrometry-based proteomics. Nature 422, 198-207.
    • (2003) Nature , vol.422 , pp. 198-207
    • Aebersold, R.1    Mann, M.2
  • 4
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise C, and McLachlan GJ. (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci 99, 6562-6566.
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 5
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • Ashburner M, Ball C, Blake J, et al. (2000). Gene ontology: Tool for the unification of biology. Nature Genet 25, 25-29.
    • (2000) Nature Genet , vol.25 , pp. 25-29
    • Ashburner, M.1    Ball, C.2    Blake, J.3
  • 6
    • 65149084519 scopus 로고    scopus 로고
    • Improving the scalability of rule-based evolutionary learning
    • Bacardit J, Burke E, and Krasnogor N. (2009). Improving the scalability of rule-based evolutionary learning. Memetic Computing 1, 55-67.
    • (2009) Memetic Computing , vol.1 , pp. 55-67
    • Bacardit, J.1    Burke, E.2    Krasnogor, N.3
  • 7
    • 84865576726 scopus 로고    scopus 로고
    • Quantitative mass spectrometry in proteomics: Critical review update from 2007 to the present
    • Bantscheff M, Lemeer S, Savitski M, and Kuster B. (2012). Quantitative mass spectrometry in proteomics: Critical review update from 2007 to the present. Anal Bioanal Chem 404, 939-965.
    • (2012) Anal Bioanal Chem , vol.404 , pp. 939-965
    • Bantscheff, M.1    Lemeer, S.2    Savitski, M.3    Kuster, B.4
  • 9
    • 80054969308 scopus 로고    scopus 로고
    • Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets
    • Bassel GW, Glaab E, Marquez J, Holdsworth MJ, and Bacardit J. (2011). Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets. The Plant Cell 23, 3101-3116.
    • (2011) The Plant Cell , vol.23 , pp. 3101-3116
    • Bassel, G.W.1    Glaab, E.2    Marquez, J.3    Holdsworth, M.J.4    Bacardit, J.5
  • 10
    • 33747180294 scopus 로고    scopus 로고
    • A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS
    • Bellew M, Coram M, Fitzgibbon M, et al. (2006). A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 22, 1902-1909.
    • (2006) Bioinformatics , vol.22 , pp. 1902-1909
    • Bellew, M.1    Coram, M.2    Fitzgibbon, M.3
  • 11
    • 23144442824 scopus 로고    scopus 로고
    • Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides
    • Beynon RJ, Doherty MK, Pratt JM, and Gaskell SJ. (2005). Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Meth 2, 587-589.
    • (2005) Nat Meth , vol.2 , pp. 587-589
    • Beynon, R.J.1    Doherty, M.K.2    Pratt, J.M.3    Gaskell, S.J.4
  • 12
    • 79551649335 scopus 로고    scopus 로고
    • A new approach to study exhaled proteins as potential biomarkers for asthma
    • Bloemen K, Van Den Heuvel R, Govarts E, et al. (2011). A new approach to study exhaled proteins as potential biomarkers for asthma. Clin Exp Allergy 41, 346-356.
    • (2011) Clin Exp Allergy , vol.41 , pp. 346-356
    • Bloemen, K.1    Van Den Heuvel, R.2    Govarts, E.3
  • 13
    • 34547783954 scopus 로고    scopus 로고
    • Precise protein quantification based on peptide quantification using iTRAQTM
    • Boehm A, Putz S, Altenhofer D. Sickmann A, and Falk M. (2007). Precise protein quantification based on peptide quantification using iTRAQTM. BMC Bioinform 8, 214.
    • (2007) BMC Bioinform , vol.8 , pp. 214
    • Boehm, A.1    Putz, S.2    Altenhofer, D.3    Sickmann, A.4    Falk, M.5
  • 14
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. (2001). Random Forests. Machine Learning 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 17
    • 80052033624 scopus 로고    scopus 로고
    • Protein identification using MS/MS data
    • Cottrell JS. (2011). Protein identification using MS/MS data. J Proteomics 74, 1842-1851.
    • (2011) J Proteomics , vol.74 , pp. 1842-1851
    • Cottrell, J.S.1
  • 18
    • 3142702204 scopus 로고    scopus 로고
    • TANDEM: Matching proteins with tandem mass spectra
    • Craig R, and Beavis RC. (2004). TANDEM: Matching proteins with tandem mass spectra. Bioinformatics 20, 1466-1467.
    • (2004) Bioinformatics , vol.20 , pp. 1466-1467
    • Craig, R.1    Beavis, R.C.2
  • 19
    • 0035871371 scopus 로고    scopus 로고
    • Artificial neural networks: Opening the black box
    • Dayhoff JE, and Deleo JM. (2001). Artificial neural networks: Opening the black box. Cancer 91, 1615-1635.
    • (2001) Cancer , vol.91 , pp. 1615-1635
    • Dayhoff, J.E.1    Deleo, J.M.2
  • 20
    • 2542640080 scopus 로고    scopus 로고
    • Mass spectrometry as a diagnostic and a cancer biomarker discovery tool
    • Diamandis EP. (2004). Mass spectrometry as a diagnostic and a cancer biomarker discovery tool. Mol Cell Proteomics 3, 367-378.
    • (2004) Mol Cell Proteomics , vol.3 , pp. 367-378
    • Diamandis, E.P.1
  • 21
    • 33645813378 scopus 로고    scopus 로고
    • Mass spectrometry and protein analysis
    • Domon B, and Aebersold R. (2006). Mass spectrometry and protein analysis. Science 312, 212-217.
    • (2006) Science , vol.312 , pp. 212-217
    • Domon, B.1    Aebersold, R.2
  • 26
    • 70449632949 scopus 로고    scopus 로고
    • A neural network approach to multibiomarker panel development based on LC/MS/MS proteomics profiles: A case study in breast cancer
    • 2009. CBMS 2009. 22nd IEEE International Symposium on
    • Fan Z, and Chen JY. (2009). A neural network approach to multibiomarker panel development based on LC/MS/MS proteomics profiles: A case study in breast cancer. Computer-Based Medical Systems, 2009. CBMS 2009. 22nd IEEE International Symposium on, pp. 1-6.
    • (2009) Computer-Based Medical Systems , pp. 1-6
    • Fan, Z.1    Chen, J.Y.2
  • 27
    • 0024438708 scopus 로고
    • Electrospray ionization for mass spectrometry of large biomolecules
    • Fenn J, Mann M, Meng C, Wong S, and Whitehouse C. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64-71.
    • (1989) Science , vol.246 , pp. 64-71
    • Fenn, J.1    Mann, M.2    Meng, C.3    Wong, S.4    Whitehouse, C.5
  • 28
    • 0033075882 scopus 로고    scopus 로고
    • Separate-and-conquer rule learning
    • Fürnkranz J. (1999). Separate-and-conquer rule learning. Artific Intell Rev 13, 3-54.
    • (1999) Artific Intell Rev , vol.13 , pp. 3-54
    • Furnkranz, J.1
  • 29
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman R, Carey V, Bates D, et al. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol 5, R80.
    • (2004) Genome Biol , vol.5
    • Gentleman, R.1    Carey, V.2    Bates, D.3
  • 30
    • 0037795741 scopus 로고    scopus 로고
    • Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS
    • Gerber SA, Rush J, Stemman O, Kirschner MW, and Gygi SP. (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci 100, 6940-6945.
    • (2003) Proc Natl Acad Sci , vol.100 , pp. 6940-6945
    • Gerber, S.A.1    Rush, J.2    Stemman, O.3    Kirschner, M.W.4    Gygi, S.P.5
  • 31
    • 84871983086 scopus 로고    scopus 로고
    • Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry
    • Gillette MA, and Carr SA. (2013). Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Meth 10, 28-34.
    • (2013) Nat Meth , vol.10 , pp. 28-34
    • Gillette, M.A.1    Carr, S.A.2
  • 32
    • 84863856522 scopus 로고    scopus 로고
    • Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data
    • Glaab E, Bacardit J, Garibaldi JM, and Krasnogor N. (2012). Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data. PLoS ONE 7, e39932.
    • (2012) PLoS ONE , vol.7
    • Glaab, E.1    Bacardit, J.2    Garibaldi, J.M.3    Krasnogor, N.4
  • 33
    • 70349731767 scopus 로고    scopus 로고
    • Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines
    • Guan W, Zhou M, Hampton C, et al. (2009). Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines. BMC Bioinformat 10, 259.
    • (2009) BMC Bioinformat , vol.10 , pp. 259
    • Guan, W.1    Zhou, M.2    Hampton, C.3
  • 34
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, and Elisseeff A. (2003). An introduction to variable and feature selection. J Machine Learning Res 3, 1157-1182.
    • (2003) J Machine Learning Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 35
    • 77954205753 scopus 로고    scopus 로고
    • PepC: Proteomics software for identifying differentially expressed proteins based on spectral counting
    • Heinecke NL, Pratt BS, Vaisar T, and Becker L. (2010). PepC: Proteomics software for identifying differentially expressed proteins based on spectral counting. Bioinformatics 26, 1574-1575.
    • (2010) Bioinformatics , vol.26 , pp. 1574-1575
    • Heinecke, N.L.1    Pratt, B.S.2    Vaisar, T.3    Becker, L.4
  • 36
    • 84877919900 scopus 로고    scopus 로고
    • Omic' technologies: Genomics, transcriptomics, proteomics and metabolomics
    • Horgan RP, and Kenny LC. (2011). 'Omic' technologies: Genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol 13, 189-195.
    • (2011) Obstet Gynaecol , vol.13 , pp. 189-195
    • Horgan, R.P.1    Kenny, L.C.2
  • 37
    • 58549112996 scopus 로고    scopus 로고
    • Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists
    • Huang DW, Lempicki RA, and Sherman BT. (2009). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37, 1-13.
    • (2009) Nucleic Acids Res , vol.37 , pp. 1-13
    • Huang, D.W.1    Lempicki, R.A.2    Sherman, B.T.3
  • 38
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • Huang DW, Sherman BT, and Lempicki RA. (2008). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44-57.
    • (2008) Nature Protocols , vol.4 , pp. 44-57
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 39
    • 62549104880 scopus 로고    scopus 로고
    • SciMiner: Web-based literature mining tool for target identification and functional enrichment analysis
    • Hur J, Schuyler AD, States DJ, and Feldman EL. (2009). SciMiner: Web-based literature mining tool for target identification and functional enrichment analysis. Bioinformatics 25, 838-840.
    • (2009) Bioinformatics , vol.25 , pp. 838-840
    • Hur, J.1    Schuyler, A.D.2    States, D.J.3    Feldman, E.L.4
  • 40
    • 26844559000 scopus 로고    scopus 로고
    • Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein
    • Ishihama Y, Oda Y, Tabata T, et al. (2005). Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4, 1265-1272.
    • (2005) Mol Cell Proteomics , vol.4 , pp. 1265-1272
    • Ishihama, Y.1    Oda, Y.2    Tabata, T.3
  • 41
    • 66449084442 scopus 로고    scopus 로고
    • Infrastructure for the life sciences: Design and implementation of the UniProt website
    • Jain E, Bairoch A, Duvaud S, et al. (2009). Infrastructure for the life sciences: Design and implementation of the UniProt website. BMC Bioinformat 10, 136.
    • (2009) BMC Bioinformat , vol.10 , pp. 136
    • Jain, E.1    Bairoch, A.2    Duvaud, S.3
  • 42
    • 0035042776 scopus 로고    scopus 로고
    • A literature network of human genes for high-Throughput analysis of gene expression
    • Jenssen TK, Laegreid A, Komorowski J, and Hovig E. (2001). A literature network of human genes for high-Throughput analysis of gene expression. Nature Genet 28, 21-28.
    • (2001) Nature Genet , vol.28 , pp. 21-28
    • Jenssen, T.K.1    Laegreid, A.2    Komorowski, J.3    Hovig, E.4
  • 46
    • 33644527950 scopus 로고    scopus 로고
    • The model organism as a system: Integrating 'omics' data sets
    • Joyce AR, and Palsson BO. (2006). The model organism as a system: Integrating 'omics' data sets. Nat RevMol Cell Biol 7, 198-210.
    • (2006) Nat RevMol Cell Biol , vol.7 , pp. 198-210
    • Joyce, A.R.1    Palsson, B.O.2
  • 47
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa M, and Goto S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27
    • Kanehisa, M.1    Goto, S.2
  • 48
    • 33644867564 scopus 로고    scopus 로고
    • MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data
    • Katajamaa M, Miettinen J, and Oreši-c M. (2006). MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634-636.
    • (2006) Bioinformatics , vol.22 , pp. 634-636
    • Katajamaa, M.1    Miettinen, J.2    Orešic, M.3
  • 49
    • 25444526868 scopus 로고    scopus 로고
    • Processing methods for differential analysis of LC/MS profile data
    • Katajamaa M, and Oresic M. (2005). Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics 6, 179.
    • (2005) BMC Bioinformatics , vol.6 , pp. 179
    • Katajamaa, M.1    Oresic, M.2
  • 50
    • 85164392958 scopus 로고
    • A Study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi R. (1995). A Study of cross-validation and bootstrap for accuracy estimation and model selection. 14th International Joint Conference on ArtificialIntelligence, pp. 1137-1145.
    • (1995) 14th International Joint Conference on ArtificialIntelligence , pp. 1137-1145
    • Kohavi, R.1
  • 51
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, and John GH. (1997). Wrappers for feature subset selection. Artific Intell 97, 273-324.
    • (1997) Artific Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 52
    • 79955076643 scopus 로고    scopus 로고
    • Supervised machine learning: A review of classification techniques
    • Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies. IOS Press
    • Kotsiantis SB. (2007). Supervised Machine Learning: A review of classification techniques. Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies. IOS Press, pp. 3-24.
    • (2007) Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real
    • Kotsiantis, S.B.1
  • 53
    • 54049090766 scopus 로고    scopus 로고
    • Selected reaction monitoring for quantitative proteomics: A tutorial
    • Lange V, Picotti P, Domon B, and Aebersold R. (2008). Selected reaction monitoring for quantitative proteomics: A tutorial. Mol Syst Biol 4.
    • (2008) Mol Syst Biol , vol.4
    • Lange, V.1    Picotti, P.2    Domon, B.3    Aebersold, R.4
  • 55
    • 65249161129 scopus 로고    scopus 로고
    • Pathway-based biomarker search by high-Throughput proteomics profiling of secretomes
    • Lawlor K, Nazarian A, Lacomis L, Tempst P, and Villanueva J. (2009). Pathway-based biomarker search by high-Throughput proteomics profiling of secretomes. J Proteome Res 8, 1489-1503.
    • (2009) J Proteome Res , vol.8 , pp. 1489-1503
    • Lawlor, K.1    Nazarian, A.2    Lacomis, L.3    Tempst, P.4    Villanueva, J.5
  • 56
    • 16244390914 scopus 로고    scopus 로고
    • Identification of serum amyloid A as a biomarker to distinguish prostate cancer patients with bone lesions
    • Le L, Chi K, Tyldesley S, et al. (2005). Identification of serum amyloid A as a biomarker to distinguish prostate cancer patients with bone lesions. Clin Chem 51, 695-707.
    • (2005) Clin Chem , vol.51 , pp. 695-707
    • Le, L.1    Chi, K.2    Tyldesley, S.3
  • 57
    • 84890546913 scopus 로고    scopus 로고
    • Chondrocyte channel transcriptomics: Do microarray data fit with expression and functional datä
    • Lewis R, May H, Mobasheri A, and Barrett-Jolley R. (2013). Chondrocyte channel transcriptomics: Do microarray data fit with expression and functional datä Channels 7, 1.
    • (2013) Channels , vol.7 , pp. 1
    • Lewis, R.1    May, H.2    Mobasheri, A.3    Barrett-Jolley, R.4
  • 58
    • 0033051101 scopus 로고    scopus 로고
    • Direct analysis of protein complexes using mass spectrometry
    • Link AJ, Eng J, Schieltz DM, et al. (1999). Direct analysis of protein complexes using mass spectrometry. Nat Biotech 17, 676-682.
    • (1999) Nat Biotech , vol.17 , pp. 676-682
    • Link, A.J.1    Eng, J.2    Schieltz, D.M.3
  • 59
    • 33846165487 scopus 로고    scopus 로고
    • Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation
    • Lu P, Vogel C, Wang R, Yao X, and Marcotte E. (2007). Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnol 25, 117-124.
    • (2007) Nature Biotechnol , vol.25 , pp. 117-124
    • Lu, P.1    Vogel, C.2    Wang, R.3    Yao, X.4    Marcotte, E.5
  • 60
  • 61
    • 39649117755 scopus 로고    scopus 로고
    • The impact of next-generation sequencing technology on genetics
    • Mardis ER. (2008). The impact of next-generation sequencing technology on genetics. Trends Genet 24, 133-141.
    • (2008) Trends Genet , vol.24 , pp. 133-141
    • Mardis, E.R.1
  • 63
    • 36749004371 scopus 로고    scopus 로고
    • Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics
    • McLafferty FW, Breuker K, Jin M, et al. (2007). Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J 274, 6256-6268.
    • (2007) FEBS J , vol.274 , pp. 6256-6268
    • McLafferty, F.W.1    Breuker, K.2    Jin, M.3
  • 65
    • 84867868437 scopus 로고    scopus 로고
    • Osteoarthritis year 2012 in review: Biomarkers
    • Mobasheri A. (2012). Osteoarthritis year 2012 in review: Biomarkers. Osteoarth Cartilage 20, 1451-1464.
    • (2012) Osteoarth Cartilage , vol.20 , pp. 1451-1464
    • Mobasheri, A.1
  • 66
    • 79551500036 scopus 로고    scopus 로고
    • Less label, more free: Approaches in label-free quantitative mass spectrometry
    • Neilson KA, Ali NA, Muralidharan S, et al. (2011). Less label, more free: Approaches in label-free quantitative mass spectrometry. Proteomics 11, 535-553.
    • (2011) Proteomics , vol.11 , pp. 535-553
    • Neilson, K.A.1    Ali, N.A.2    Muralidharan, S.3
  • 68
    • 0036583926 scopus 로고    scopus 로고
    • Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics
    • Ong S, Blagoev B, Kratchmarova I, Kristensen D, Steen H, Pandey A, and Mann M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376-386.
    • (2002) Mol Cell Proteomics , vol.1 , pp. 376-386
    • Ong, S.1    Blagoev, B.2    Kratchmarova, I.3    Kristensen, D.4    Steen, H.5    Pandey, A.6    Mann, M.7
  • 70
    • 0033434080 scopus 로고    scopus 로고
    • Probability-based protein identification by searching sequence databases using mass spectrometry data
    • Perkins DN, Pappin DJC, Creasy DM, and Cottrell JS. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-3567.
    • (1999) Electrophoresis , vol.20 , pp. 3551-3567
    • Perkins, D.N.1    Pappin, D.J.C.2    Creasy, D.M.3    Cottrell, J.S.4
  • 71
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press
    • Platt JC. (1999). Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods. MIT Press, pp. 185-208.
    • (1999) Advances in Kernel Methods. , pp. 185-208
    • Platt, J.C.1
  • 73
    • 46749120270 scopus 로고    scopus 로고
    • Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling, multidimensional liquid chromatography, and tandem mass spectrometry
    • Ralhan R, Desouza LV, Matta A, et al. (2008). Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling, multidimensional liquid chromatography, and tandem mass spectrometry. Mol Cell Proteomics 7, 1162-1173.
    • (2008) Mol Cell Proteomics , vol.7 , pp. 1162-1173
    • Ralhan, R.1    Desouza, L.V.2    Matta, A.3
  • 74
    • 65749099746 scopus 로고    scopus 로고
    • Proteomic identification and profiling of canine lymphoma patients
    • Ratcliffe L, Mian S, Slater K, et al. (2009). Proteomic identification and profiling of canine lymphoma patients. Veterinary Comp Oncol 7, 92-105.
    • (2009) Veterinary Comp Oncol , vol.7 , pp. 92-105
    • Ratcliffe, L.1    Mian, S.2    Slater, K.3
  • 75
    • 79956266421 scopus 로고    scopus 로고
    • Proteomic technologies for the identification of disease biomarkers in serum: Advances and challenges ahead
    • Ray S, Reddy PJ, Jain R, Gollapalli K, Moiyadi A, and Srivastava S. (2011). Proteomic technologies for the identification of disease biomarkers in serum: Advances and challenges ahead. Proteomics 11, 2139-2161.
    • (2011) Proteomics , vol.11 , pp. 2139-2161
    • Ray, S.1    Reddy, P.J.2    Jain, R.3    Gollapalli, K.4    Moiyadi, A.5    Srivastava, S.6
  • 76
    • 79953139278 scopus 로고    scopus 로고
    • Protein mass spectra data analysis for clinical biomarker discovery: A global review
    • Roy P, Truntzer C, Maucort-Boulch D, Jouve T, and Molinari N. (2011). Protein mass spectra data analysis for clinical biomarker discovery: A global review. Briefings Bioinformat 12, 176-186.
    • (2011) Briefings Bioinformat , vol.12 , pp. 176-186
    • Roy, P.1    Truntzer, C.2    Maucort-Boulch, D.3    Jouve, T.4    Molinari, N.5
  • 77
    • 77954122515 scopus 로고    scopus 로고
    • Discovery and verification of amyotrophic lateral sclerosis biomarkers by proteomics
    • Ryberg H, An J, Darko S, et al. (2010). Discovery and verification of amyotrophic lateral sclerosis biomarkers by proteomics. Muscle Nerve 42, 104-111.
    • (2010) Muscle Nerve , vol.42 , pp. 104-111
    • Ryberg, H.1    An, J.2    Darko, S.3
  • 79
    • 59149084542 scopus 로고    scopus 로고
    • Targeted proteomic strategy for clinical biomarker discovery
    • Schiess R, Wollscheid B, and Aebersold R. (2009). Targeted proteomic strategy for clinical biomarker discovery. Mol Oncol 3, 33-44.
    • (2009) Mol Oncol , vol.3 , pp. 33-44
    • Schiess, R.1    Wollscheid, B.2    Aebersold, R.3
  • 80
    • 0037487098 scopus 로고    scopus 로고
    • Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: When does ESI turn into nano-ESI?
    • Schmidt A, Karas M, and Dülcks T. (2003). Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: When does ESI turn into nano-ESI? J Am Soc Mass Spectrometr 14, 492-500.
    • (2003) J Am Soc Mass Spectrometr , vol.14 , pp. 492-500
    • Schmidt, A.1    Karas, M.2    Dülcks, T.3
  • 81
    • 1642314524 scopus 로고    scopus 로고
    • A novel proteomic screen for peptide-protein interactions
    • Schulze WX, and Mann M. (2004). A novel proteomic screen for peptide-protein interactions. J Biol Chem 279, 10756-10764.
    • (2004) J Biol Chem , vol.279 , pp. 10756-10764
    • Schulze, W.X.1    Mann, M.2
  • 82
    • 78349271277 scopus 로고    scopus 로고
    • Studies of complex biological systems with applications to molecular medicine: The need to integrate transcriptomic and proteomic approaches
    • Silvestri E, Lombardi A, De Lange P, et al. (2011). Studies of complex biological systems with applications to molecular medicine: The need to integrate transcriptomic and proteomic approaches. J Biomed Biotechnol 2011, 810-829.
    • (2011) J Biomed Biotechnol , vol.2011 , pp. 810-829
    • Silvestri, E.1    Lombardi, A.2    De Lange, P.3
  • 83
    • 32444446805 scopus 로고    scopus 로고
    • XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification
    • Smith CA, Want EJ, O'Maille G, Abagyan R, and Siuzdak G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78, 779-787.
    • (2006) Anal Chem , vol.78 , pp. 779-787
    • Smith, C.A.1    Want, E.J.2    O'Maille, G.3    Abagyan, R.4    Siuzdak, G.5
  • 84
    • 79954507289 scopus 로고    scopus 로고
    • Recent advances in computational analysis of mass spectrometry for proteomic profiling
    • Sun CS, and Markey MK. (2011). Recent advances in computational analysis of mass spectrometry for proteomic profiling. J Mass Spectrom 46, 443-456.
    • (2011) J Mass Spectrom , vol.46 , pp. 443-456
    • Sun, C.S.1    Markey, M.K.2
  • 85
    • 68449083308 scopus 로고    scopus 로고
    • Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology
    • Tan KC, Ipcho SVS, Trengove RD, Oliver RP, and Solomon PS, (2009). Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Mol Plant Pathol 10, 703-715.
    • (2009) Mol Plant Pathol , vol.10 , pp. 703-715
    • Tan, K.C.1    Ipcho, S.V.S.2    Trengove, R.D.3    Oliver, R.P.4    Solomon, P.S.5
  • 86
    • 54949111758 scopus 로고    scopus 로고
    • FACTA: A text search engine for finding associated biomedical concepts
    • Tsuruoka Y, Tsujii JI, and Ananiadou S. (2008). FACTA: A text search engine for finding associated biomedical concepts. Bioinformatics 24, 2559-2560.
    • (2008) Bioinformatics , vol.24 , pp. 2559-2560
    • Tsuruoka, Y.1    Tsujii, J.I.2    Ananiadou, S.3
  • 87
    • 33644860703 scopus 로고    scopus 로고
    • Bias in error estimation when using cross-validation for model selection
    • Varma S, and Simon R. (2006). Bias in error estimation when using cross-validation for model selection. BMC Bioinformat 7, 91.
    • (2006) BMC Bioinformat , vol.7 , pp. 91
    • Varma, S.1    Simon, R.2
  • 88
    • 33846817288 scopus 로고    scopus 로고
    • Global and targeted quantitative proteomics for biomarker discovery
    • Veenstra TD. (2007). Global and targeted quantitative proteomics for biomarker discovery. J Chromatog B 847, 3-11.
    • (2007) J Chromatog B , vol.847 , pp. 3-11
    • Veenstra, T.D.1
  • 89
    • 0942265518 scopus 로고    scopus 로고
    • Diagnosis of ovarian cancer using decision tree classification of mass spectral data
    • Vlahou ASJ, Gregory BW, and Coleman RL, (2003). Diagnosis of ovarian cancer using decision tree classification of mass spectral data. J Biomed Biotechnol 2003, 308-314.
    • (2003) J Biomed Biotechnol 2003 , pp. 308-314
    • Vlahou, A.S.J.1    Gregory, B.W.2    Coleman, R.L.3
  • 90
    • 51649124498 scopus 로고    scopus 로고
    • Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data
    • Vogel C, and Marcotte E. (2008). Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data. Nature Protocols 3, 1444-1451.
    • (2008) Nature Protocols , vol.3 , pp. 1444-1451
    • Vogel, C.1    Marcotte, E.2
  • 92
    • 77955876447 scopus 로고    scopus 로고
    • Mass spectrometry-based proteomics in cell biology
    • Walther TC, and Mann M. (2010). Mass spectrometry-based proteomics in cell biology. J Cell Biol 190, 491-500.
    • (2010) J Cell Biol , vol.190 , pp. 491-500
    • Walther, T.C.1    Mann, M.2
  • 93
    • 84890520049 scopus 로고    scopus 로고
    • Use of the zero norm with linear models and kernel methods
    • Weston J, Elisseeff A, Scholkopf B, and Tipping M. (2003). Use of the zero norm with linear models and kernel methods. J Mach Learn Res 3, 1439-1461.
    • (2003) J Mach Learn Res , vol.3 , pp. 1439-1461
    • Weston, J.1    Elisseeff, A.2    Scholkopf, B.3    Tipping, M.4
  • 95
    • 75649122624 scopus 로고    scopus 로고
    • Biomarkers: In combination they may do better
    • Williams F. (2009). Biomarkers: In combination they may do better. Arthritis Res Ther 11, 130.
    • (2009) Arthritis Res Ther , vol.11 , pp. 130
    • Williams, F.1
  • 96
  • 97
    • 70350247863 scopus 로고    scopus 로고
    • Quantitative proteomics in biological research
    • Wilm M. (2009). Quantitative proteomics in biological research. Proteomics 9, 4590-4605.
    • (2009) Proteomics , vol.9 , pp. 4590-4605
    • Wilm, M.1
  • 98
    • 0000217562 scopus 로고
    • Electrospray and Taylor-Cone theory Dole's beam of macromolecules at last?
    • Wilm MS, and Mann M. (1994). Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? Intl J Mass Spectrom Ion Processes 136, 167-180.
    • (1994) Intl J Mass Spectrom Ion Processes , vol.136 , pp. 167-180
    • Wilm, M.S.1    Mann, M.2
  • 101
    • 67651173106 scopus 로고    scopus 로고
    • Proteomics by mass spectrometry: Approaches, advances, and applications
    • Yates JR, Ruse CI, and Nakorchevsky A. (2009). Proteomics by mass spectrometry: Approaches, advances, and applications. Ann Rev Biomed Engineer 11, 49-79.
    • (2009) Ann Rev Biomed Engineer , vol.11 , pp. 49-79
    • Yates, J.R.1    Ruse, C.I.2    Nakorchevsky, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.