메뉴 건너뛰기




Volumn 25, Issue 12, 2014, Pages 2240-2249

Semi-supervised domain adaptation on manifolds

Author keywords

Domain adaptation; semi supervised learning; transfer learning.

Indexed keywords

ITERATIVE METHODS; LEARNING ALGORITHMS; MATHEMATICAL TRANSFORMATIONS; METADATA; SUPERVISED LEARNING;

EID: 84913588904     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2308325     Document Type: Article
Times cited : (70)

References (31)
  • 1
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • H. Daumé, "Frustratingly easy domain adaptation," in Proc. ACL, 2007, pp. 256-263
    • (2007) Proc. ACL , pp. 256-263
    • Daumé, H.1
  • 2
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification
    • J. Blitzer, M. Dredze, and F. Pereira, "Biographies, Bollywood, boomboxes and blenders: Domain adaptation for sentiment classification," in Proc. ACL, 2007, pp. 432-439
    • (2007) Proc. ACL , pp. 432-439
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 4
    • 84864049234 scopus 로고    scopus 로고
    • Analysis of representations for domain adaptation
    • S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, "Analysis of representations for domain adaptation," in Proc. NIPS, 2007, pp. 137-144
    • (2007) Proc. NIPS , pp. 137-144
    • Ben-David, S.1    Blitzer, J.2    Crammer, K.3    Pereira, F.4
  • 6
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Oct
    • S. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010
    • (2010) IEEE Trans. Knowl. Data Eng , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.1    Yang, Q.2
  • 7
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • J. Blitzer, R. McDonald, and F. Pereira, "Domain adaptation with structural correspondence learning," in Proc. EMNLP, 2006, pp. 120-128
    • (2006) Proc. EMNLP , pp. 120-128
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 8
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Dec
    • R. Ando and T. Zhang, "A framework for learning predictive structures from multiple tasks and unlabeled data," J. Mach. Learn. Res., vol. 6, pp. 1817-1853, Dec. 2005
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 9
    • 85162030733 scopus 로고    scopus 로고
    • Co-regularization based semisupervised domain adaptation
    • H. Daumé, A. Kumar, and A. Saha, "Co-regularization based semisupervised domain adaptation," in Proc. NIPS, 2010, pp. 478-486
    • (2010) Proc. NIPS , pp. 478-486
    • Daumé, H.1    Kumar, A.2    Saha, A.3
  • 11
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • Feb
    • S. Pan, I. Tsang, J. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 199-210, Feb. 2011
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.2 , pp. 199-210
    • Pan, S.1    Tsang, I.2    Kwok, J.3    Yang, Q.4
  • 12
    • 84888005581 scopus 로고    scopus 로고
    • Semisupervised multitask learning with Gaussian processes
    • Dec
    • G. Skolidis and G. Sanguinetti, "Semisupervised multitask learning with Gaussian processes," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 12, pp. 2101-2112, Dec. 2013
    • (2013) IEEE Trans. Neural Netw. Learn. Syst , vol.24 , Issue.12 , pp. 2101-2112
    • Skolidis, G.1    Sanguinetti, G.2
  • 14
    • 78149318752 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell, "Adapting visual category models to new domains," in Proc. 11th ECCV, 2010, pp. 213-226
    • (2010) Proc. 11th ECCV , pp. 213-226
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 15
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • Jun
    • B. Kulis, K. Saenko, and T. Darrell, "What you saw is not what you get: Domain adaptation using asymmetric kernel transforms," in Proc. IEEE Conf. CVPR, Jun. 2011, pp. 1785-1792
    • (2011) Proc. IEEE Conf. CVPR , pp. 1785-1792
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 16
    • 79953064532 scopus 로고    scopus 로고
    • Domain adaptation from multiple sources via auxiliary classifiers
    • L. Duan, I. Tsang, D. Xu, and T. Chua, "Domain adaptation from multiple sources via auxiliary classifiers," in Proc. 26th Annu. ICML, 2009, pp. 289-296
    • (2009) Proc. 26th Annu. ICML , pp. 289-296
    • Duan, L.1    Tsang, I.2    Xu, D.3    Chua, T.4
  • 17
    • 0032216898 scopus 로고    scopus 로고
    • The geometry of algorithms with orthogonality constraints
    • A. Edelman, T. Arias, and S. Smith, "The geometry of algorithms with orthogonality constraints," SIAM J. Matrix Anal. Appl, vol. 20, no. 2, pp. 303-353, 1998
    • (1998) SIAM J. Matrix Anal. Appl , vol.20 , Issue.2 , pp. 303-353
    • Edelman, A.1    Arias, T.2    Smith, S.3
  • 20
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Nov
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 22
    • 21844471282 scopus 로고    scopus 로고
    • Matrix exponentiated gradient updates for on-line learning and bregman projections
    • Dec
    • K. Tsuda, G. Ratsch, and M. Warmuth, "Matrix exponentiated gradient updates for on-line learning and Bregman projections," J. Mach. Learn. Res., vol. 6, pp. 995-1018, Dec. 2005
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 995-1018
    • Tsuda, K.1    Ratsch, G.2    Warmuth, M.3
  • 24
    • 34347209764 scopus 로고    scopus 로고
    • Globally convergent optimization algorithms on Riemannian manifolds: Uniform framework for unconstrained and constrained optimization
    • Y. Yang, "Globally convergent optimization algorithms on Riemannian manifolds: Uniform framework for unconstrained and constrained optimization," J. Optim. Theory Appl., vol. 132, no. 2, pp. 245-265, 2007
    • (2007) J. Optim. Theory Appl , vol.132 , Issue.2 , pp. 245-265
    • Yang, Y.1
  • 25
    • 27144549311 scopus 로고    scopus 로고
    • The scaling and squaring method for the matrix exponential revisited
    • N. Higham, "The scaling and squaring method for the matrix exponential revisited," SIAM J. Matrix Anal. Appl., vol. 26, no. 4, pp. 1179-1193, 2005
    • (2005) SIAM J. Matrix Anal. Appl , vol.26 , Issue.4 , pp. 1179-1193
    • Higham, N.1
  • 26
    • 0001143041 scopus 로고
    • Nineteen dubious ways to compute the exponential of a matrix
    • C. Moler and C. Loan, "Nineteen dubious ways to compute the exponential of a matrix," SIAM Rev., vol. 20, no. 4, pp. 801-836, 1978
    • (1978) SIAM Rev , vol.20 , Issue.4 , pp. 801-836
    • Moler, C.1    Loan, C.2
  • 27
    • 85162355574 scopus 로고    scopus 로고
    • A two-stage weighting framework for multi-source domain adaptation
    • Q. Sun, R. Chattopadhyay, S. Panchanathan, and J. Ye, "A two-stage weighting framework for multi-source domain adaptation," in Proc. NIPS, 2011, pp. 505-513
    • (2011) Proc. NIPS , pp. 505-513
    • Sun, Q.1    Chattopadhyay, R.2    Panchanathan, S.3    Ye, J.4
  • 28
    • 65449181688 scopus 로고    scopus 로고
    • Knowledge transfer via multiple model local structure mapping
    • J. Gao, W. Fan, J. Jiang, and J. Han, "Knowledge transfer via multiple model local structure mapping," in Proc. 14th KDD, 2008, pp. 283-291
    • (2008) Proc. 14th KDD , pp. 283-291
    • Gao, J.1    Fan, W.2    Jiang, J.3    Han, J.4
  • 29
    • 70350645469 scopus 로고    scopus 로고
    • Cross domain distribution adaptation via kernel mapping
    • E. Zhong et al., "Cross domain distribution adaptation via kernel mapping," in Proc. 15th KDD, 2009, pp. 1027-1036
    • (2009) Proc. 15th KDD , pp. 1027-1036
    • Zhong, E.1
  • 31
    • 84873290778 scopus 로고    scopus 로고
    • Optimal reverse prediction: A unified perspective on supervised, unsupervised and semi-supervised learning
    • L. Xu, M. White, and D. Schuurmans, "Optimal reverse prediction: A unified perspective on supervised, unsupervised and semi-supervised learning," in Proc. ICML, 2009, pp. 143-151
    • (2009) Proc. ICML , pp. 143-151
    • Xu, L.1    White, M.2    Schuurmans, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.