메뉴 건너뛰기




Volumn 25, Issue 12, 2014, Pages 2677-2689

Effect of surfactant types on the biocompatibility of electrospun HAp/PHBV composite nanofibers

Author keywords

[No Author keywords available]

Indexed keywords

BIOCERAMICS; BIOCOMPATIBILITY; BIODEGRADABLE POLYMERS; CATIONIC SURFACTANTS; CRYSTALLINITY; ELECTROSPINNING; HYDROPHOBICITY; HYDROXYAPATITE; NANOFIBERS; PHOSPHATE MINERALS; PRECIPITATION (CHEMICAL); SCAFFOLDS (BIOLOGY); SULFUR COMPOUNDS; SURFACE CHEMISTRY; SUSPENSIONS (FLUIDS); TISSUE;

EID: 84912150732     PISSN: 09574530     EISSN: 15734838     Source Type: Journal    
DOI: 10.1007/s10856-014-5286-1     Document Type: Article
Times cited : (26)

References (73)
  • 1
    • 70349840761 scopus 로고    scopus 로고
    • Electrospun materials as potential platforms for bone tissue engineering
    • Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev. 2009;61:1065–83.
    • (2009) Adv Drug Deliv Rev , vol.61 , pp. 1065-1083
    • Jang, J.H.1    Castano, O.2    Kim, H.W.3
  • 2
    • 84856446577 scopus 로고    scopus 로고
    • The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow derived mesenchymal stem cells
    • Lü LX, Wang YY, Mao X, Xiao ZD, Huang NP. The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow derived mesenchymal stem cells. Biomed Mater. 2012;7:1–11.
    • (2012) Biomed Mater , vol.7 , pp. 1-11
    • Lü, L.X.1    Wang, Y.Y.2    Mao, X.3    Xiao, Z.D.4    Huang, N.P.5
  • 3
    • 33745799503 scopus 로고    scopus 로고
    • Electrospinning of polymeric nanofibers for tissue engineering applications: a review
    • Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12(5):1197–211.
    • (2006) Tissue Eng , vol.12 , Issue.5 , pp. 1197-1211
    • Pham, Q.P.1    Sharma, U.2    Mikos, A.G.3
  • 5
    • 77949327037 scopus 로고    scopus 로고
    • Nano-structured polymer scaffolds for tissue engineering and regenerative medicine
    • Smith IO, Liu XH, Smith LA, Ma PX. Nano-structured polymer scaffolds for tissue engineering and regenerative medicine. Nanomed Nanobiotechnol. 2009;1(2):226–36.
    • (2009) Nanomed Nanobiotechnol , vol.1 , Issue.2 , pp. 226-236
    • Smith, I.O.1    Liu, X.H.2    Smith, L.A.3    Ma, P.X.4
  • 6
    • 79952420018 scopus 로고    scopus 로고
    • Biomaterials & scaffolds for tissue engineering
    • O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.
    • (2011) Mater Today , vol.14 , Issue.3 , pp. 88-95
    • O’Brien, F.J.1
  • 7
    • 56449108387 scopus 로고    scopus 로고
    • Putting electrospun nanofibers to work for biomedical research
    • Xie J, Li X, Xia Y. Putting electrospun nanofibers to work for biomedical research. Macromol Rapid Commun. 2008;29:1775–92.
    • (2008) Macromol Rapid Commun , vol.29 , pp. 1775-1792
    • Xie, J.1    Li, X.2    Xia, Y.3
  • 8
    • 44949091386 scopus 로고    scopus 로고
    • Electrospun fibrous web of collagen–apatite precipitated nanocomposite for bone regeneration
    • Song JH, Kim HE, Kim HW. Electrospun fibrous web of collagen–apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med. 2008;19:2925–32.
    • (2008) J Mater Sci Mater Med , vol.19 , pp. 2925-2932
    • Song, J.H.1    Kim, H.E.2    Kim, H.W.3
  • 9
    • 34447338873 scopus 로고    scopus 로고
    • Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration
    • Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S. Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res. 2007;82A:445–54.
    • (2007) J Biomed Mater Res , vol.82A , pp. 445-454
    • Sui, G.1    Yang, X.2    Mei, F.3    Hu, X.4    Chen, G.5    Deng, X.6    Ryu, S.7
  • 10
    • 1942516513 scopus 로고    scopus 로고
    • Scaffolds for tissue fabrication
    • Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7(5):30–40.
    • (2004) Mater Today , vol.7 , Issue.5 , pp. 30-40
    • Ma, P.X.1
  • 12
    • 67650590068 scopus 로고    scopus 로고
    • Tissue engineering with nano-fibrous scaffolds
    • Smith LA, Liu X, Ma PX. Tissue engineering with nano-fibrous scaffolds. Soft Matter. 2008;4:2144–9.
    • (2008) Soft Matter , vol.4 , pp. 2144-2149
    • Smith, L.A.1    Liu, X.2    Ma, P.X.3
  • 13
    • 79960186409 scopus 로고    scopus 로고
    • 3D nanofibrous scaffolds for tissue engineering
    • Holzwartha JM, Ma PX. 3D nanofibrous scaffolds for tissue engineering. J Mater Chem. 2011;21:10243–51.
    • (2011) J Mater Chem , vol.21 , pp. 10243-10251
    • Holzwartha, J.M.1    Ma, P.X.2
  • 14
    • 8844263768 scopus 로고    scopus 로고
    • Nano-fibrous scaffolds for tissue engineering
    • Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces. 2004;39:125–31.
    • (2004) Colloids Surf B Biointerfaces , vol.39 , pp. 125-131
    • Smith, L.A.1    Ma, P.X.2
  • 16
    • 40049090999 scopus 로고    scopus 로고
    • Electrospinning: applications in drug delivery and tissue engineering
    • Sill TJ, Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.
    • (2008) Biomaterials , vol.29 , pp. 1989-2006
    • Sill, T.J.1    Recum, H.A.2
  • 17
    • 56349100057 scopus 로고    scopus 로고
    • Use of electrospinning technique for biomedical applications
    • Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–21.
    • (2008) Polymer , vol.49 , pp. 5603-5621
    • Agarwal, S.1    Wendorff, J.H.2    Greiner, A.3
  • 18
    • 33644934897 scopus 로고    scopus 로고
    • Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
    • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.
    • (2006) Biomaterials , vol.27 , pp. 3413-3431
    • Rezwan, K.1    Chen, Q.Z.2    Blaker, J.J.3    Boccaccini, A.R.4
  • 20
    • 29144520623 scopus 로고    scopus 로고
    • Nanofiber generation of gelatin/hydroxyapatite biomimetics for guided tissue regeneration
    • Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin/hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater. 2005;15:1988–94.
    • (2005) Adv Funct Mater , vol.15 , pp. 1988-1994
    • Kim, H.W.1    Song, J.H.2    Kim, H.E.3
  • 21
    • 34547585979 scopus 로고    scopus 로고
    • Biodegradable polymers as biomaterials
    • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.
    • (2007) Prog Polym Sci , vol.32 , pp. 762-798
    • Nair, L.S.1    Laurencin, C.T.2
  • 22
    • 4444290125 scopus 로고    scopus 로고
    • Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals
    • Hong Z, Qiu X, Sun J, Deng M, Chen X, Jing X. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer. 2004;45:6699–706.
    • (2004) Polymer , vol.45 , pp. 6699-6706
    • Hong, Z.1    Qiu, X.2    Sun, J.3    Deng, M.4    Chen, X.5    Jing, X.6
  • 23
    • 34547453856 scopus 로고    scopus 로고
    • Electrospun poly(L-lactide)-grafted hydroxyapatite/poly(L-lactide) nanocomposite fibers
    • Xu X, Chen X, Liu A, Hong Z, Jing X. Electrospun poly(L-lactide)-grafted hydroxyapatite/poly(L-lactide) nanocomposite fibers. Eur Polym. 2007;43:3187–96.
    • (2007) Eur Polym , vol.43 , pp. 3187-3196
    • Xu, X.1    Chen, X.2    Liu, A.3    Hong, Z.4    Jing, X.5
  • 24
    • 12344321636 scopus 로고    scopus 로고
    • Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers
    • Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials. 2005;26:4139–47.
    • (2005) Biomaterials , vol.26 , pp. 4139-4147
    • Fujihara, K.1    Kotaki, M.2    Ramakrishna, S.3
  • 26
    • 33751574449 scopus 로고    scopus 로고
    • Electrospinning biomedical nanocomposite fibers of hydroxyapaite/poly(lactic acid) for bone regeneration
    • Kim HW, Lee HH, Knowles JC. Electrospinning biomedical nanocomposite fibers of hydroxyapaite/poly(lactic acid) for bone regeneration. J Biomed Mater Res A. 2006;79(3):643–9.
    • (2006) J Biomed Mater Res A , vol.79 , Issue.3 , pp. 643-649
    • Kim, H.W.1    Lee, H.H.2    Knowles, J.C.3
  • 27
    • 27644495665 scopus 로고    scopus 로고
    • A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering scaffold
    • Ito Y, Hasuda H, Kamitakahara M, Ohtsuki C, Tanihara M, Kang IK, Kwon OH. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering scaffold. J Biosci Bioeng. 2005;100(1):43–9.
    • (2005) J Biosci Bioeng , vol.100 , Issue.1 , pp. 43-49
    • Ito, Y.1    Hasuda, H.2    Kamitakahara, M.3    Ohtsuki, C.4    Tanihara, M.5    Kang, I.K.6    Kwon, O.H.7
  • 28
    • 72949089699 scopus 로고    scopus 로고
    • Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds
    • Sultana N, Wang M. Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J Mater Sci Mater Med. 2008;19:2555–61.
    • (2008) J Mater Sci Mater Med , vol.19 , pp. 2555-2561
    • Sultana, N.1    Wang, M.2
  • 29
    • 84857864802 scopus 로고    scopus 로고
    • PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation
    • Sultana N, Wang M. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication. 2012;4:1–15.
    • (2012) Biofabrication , vol.4 , pp. 1-15
    • Sultana, N.1    Wang, M.2
  • 31
    • 34547892239 scopus 로고    scopus 로고
    • Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration: in vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage proinflammatory response
    • Cool SM, Kenny B, Wu A, Nurcombe V, Trau M, Cassady AI, Grøndahl L. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration: in vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage proinflammatory response. J Biomed Mater Res. 2007;82A:599–610.
    • (2007) J Biomed Mater Res , vol.82A , pp. 599-610
    • Cool, S.M.1    Kenny, B.2    Wu, A.3    Nurcombe, V.4    Trau, M.5    Cassady, A.I.6    Grøndahl, L.7
  • 32
    • 32144437418 scopus 로고    scopus 로고
    • How useful is SBF in predicting in vivo bone bioactivity?
    • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.
    • (2006) Biomaterials , vol.27 , pp. 2907-2915
    • Kokubo, T.1    Takadama, H.2
  • 33
    • 82955203707 scopus 로고    scopus 로고
    • Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites
    • Saha N, Dubey AK, Basu B. Cellular proliferation, cellular viability, and biocompatibility of HA-ZnO composites. J Biomed Mater Res B. 2012;100(1):256–64.
    • (2012) J Biomed Mater Res B , vol.100 , Issue.1 , pp. 256-264
    • Saha, N.1    Dubey, A.K.2    Basu, B.3
  • 34
    • 80052109067 scopus 로고    scopus 로고
    • In vitro behavior of human osteoblast-like cells (SaOS2) cultured on surface modified titanium and titanium–zirconium alloy
    • Chen X, Li Y, Hodgson PD, Wen C. In vitro behavior of human osteoblast-like cells (SaOS2) cultured on surface modified titanium and titanium–zirconium alloy. Mater Sci Eng C. 2011;31:1545–52.
    • (2011) Mater Sci Eng C , vol.31 , pp. 1545-1552
    • Chen, X.1    Li, Y.2    Hodgson, P.D.3    Wen, C.4
  • 35
  • 36
    • 0021061819 scopus 로고
    • Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays
    • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.
    • (1983) J Immunol Methods , vol.65 , pp. 55-63
    • Mosmann, T.1
  • 37
    • 70349985487 scopus 로고    scopus 로고
    • Relationship between free volume properties and structure of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes via various crystallization conditions
    • Cheng ML, Sun YM. Relationship between free volume properties and structure of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes via various crystallization conditions. Polymer. 2009;50:5298–307.
    • (2009) Polymer , vol.50 , pp. 5298-5307
    • Cheng, M.L.1    Sun, Y.M.2
  • 38
    • 4544357971 scopus 로고    scopus 로고
    • Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
    • Choi JS, Lee SW, Jeong L, Bae SH, Min BC, Youk JH, Park WH. Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Int J Biol Macromol. 2004;34:249–56.
    • (2004) Int J Biol Macromol , vol.34 , pp. 249-256
    • Choi, J.S.1    Lee, S.W.2    Jeong, L.3    Bae, S.H.4    Min, B.C.5    Youk, J.H.6    Park, W.H.7
  • 39
    • 33645132251 scopus 로고    scopus 로고
    • Effect of solution properties on nanofibrous structure of electrospun poly(lactic-co-glycolic acid)
    • You Y, Lee SJ, Min BM, Park WH. Effect of solution properties on nanofibrous structure of electrospun poly(lactic-co-glycolic acid). J Appl Polym Sci. 2006;99:1214–21.
    • (2006) J Appl Polym Sci , vol.99 , pp. 1214-1221
    • You, Y.1    Lee, S.J.2    Min, B.M.3    Park, W.H.4
  • 40
    • 34748828183 scopus 로고    scopus 로고
    • Reducing electrospun nanofiber diameter and variability using cationic amphiphiles
    • Lin K, Chua KN, Christopherson GT, Lim S, Mao HQ. Reducing electrospun nanofiber diameter and variability using cationic amphiphiles. Polymer. 2007;48:6384–94.
    • (2007) Polymer , vol.48 , pp. 6384-6394
    • Lin, K.1    Chua, K.N.2    Christopherson, G.T.3    Lim, S.4    Mao, H.Q.5
  • 41
    • 77049102245 scopus 로고    scopus 로고
    • Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering
    • Wang XJ, Li YC, Hodgson PD, Wen CE. Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering. Tissue Eng A. 2010;16(1):309–16.
    • (2010) Tissue Eng A , vol.16 , Issue.1 , pp. 309-316
    • Wang, X.J.1    Li, Y.C.2    Hodgson, P.D.3    Wen, C.E.4
  • 42
    • 34249054897 scopus 로고    scopus 로고
    • The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro
    • Sendemir-Urkmez A, Jamison RD. The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro. J Biomed Mater Res A. 2007;81(3):624–33.
    • (2007) J Biomed Mater Res A , vol.81 , Issue.3 , pp. 624-633
    • Sendemir-Urkmez, A.1    Jamison, R.D.2
  • 43
    • 70349104569 scopus 로고    scopus 로고
    • Electrospun nanostructured scaffolds for bone tissue engineering
    • Prabhakaran MP, Venugopal J, Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 2009;5(8):2884–93.
    • (2009) Acta Biomater , vol.5 , Issue.8 , pp. 2884-2893
    • Prabhakaran, M.P.1    Venugopal, J.2    Ramakrishna, S.3
  • 44
    • 50349091938 scopus 로고    scopus 로고
    • Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering
    • Zhang YZ, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29(32):4314–22.
    • (2008) Biomaterials , vol.29 , Issue.32 , pp. 4314-4322
    • Zhang, Y.Z.1    Venugopal, J.R.2    El-Turki, A.3    Ramakrishna, S.4    Su, B.5    Lim, C.T.6
  • 45
    • 0031936223 scopus 로고    scopus 로고
    • Calcium signals and calcium channels in osteoblastic cells
    • Duncan RL, Akanbi KA, Farach-Carson MC. Calcium signals and calcium channels in osteoblastic cells. Semin Nephrol. 1998;18:178–90.
    • (1998) Semin Nephrol , vol.18 , pp. 178-190
    • Duncan, R.L.1    Akanbi, K.A.2    Farach-Carson, M.C.3
  • 46
    • 1442326037 scopus 로고    scopus 로고
    • 2+ as an extracellular signal in bone
    • 2+ as an extracellular signal in bone. Cell Calcium. 2004;35:249–55.
    • (2004) Cell Calcium , vol.35 , pp. 249-255
    • Dvorak, M.M.1    Riccardi, D.2
  • 47
    • 14844284561 scopus 로고    scopus 로고
    • The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture
    • Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:455–84.
    • (2005) Biomaterials , vol.26 , pp. 455-484
    • Maeno, S.1    Niki, Y.2    Matsumoto, H.3    Morioka, H.4    Yatabe, T.5    Funayama, A.6    Toyama, Y.7    Taguchi, T.8    Tanaka, J.9
  • 48
    • 0034779997 scopus 로고    scopus 로고
    • Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel
    • Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res. 2001;57(2):258–67.
    • (2001) J Biomed Mater Res , vol.57 , Issue.2 , pp. 258-267
    • Kilpadi, K.L.1    Chang, P.L.2    Bellis, S.L.3
  • 49
    • 60549089836 scopus 로고    scopus 로고
    • Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate
    • Yu HS, Jang JH, Kim TI, Lee HH, Kim HW. Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate. J Biomed Mater Res A. 2009;88(3):747–54.
    • (2009) J Biomed Mater Res A , vol.88 , Issue.3 , pp. 747-754
    • Yu, H.S.1    Jang, J.H.2    Kim, T.I.3    Lee, H.H.4    Kim, H.W.5
  • 50
    • 3242681610 scopus 로고    scopus 로고
    • The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression
    • Chou YF, Huang W, Dunn JC, Miller TA, Wu BM. The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression. Biomaterials. 2005;26(3):285–95.
    • (2005) Biomaterials , vol.26 , Issue.3 , pp. 285-295
    • Chou, Y.F.1    Huang, W.2    Dunn, J.C.3    Miller, T.A.4    Wu, B.M.5
  • 51
    • 56549121685 scopus 로고    scopus 로고
    • In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes
    • Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee BK. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng A. 2008;14:2105–19.
    • (2008) Tissue Eng A , vol.14 , pp. 2105-2119
    • Ko, E.K.1    Jeong, S.I.2    Rim, N.G.3    Lee, Y.M.4    Shin, H.5    Lee, B.K.6
  • 52
    • 78751705670 scopus 로고    scopus 로고
    • Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds
    • Whited BM, Whitney JR, Hofmann MC, Xu Y, Rylander MN. Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials. 2011;32(9):2294–304.
    • (2011) Biomaterials , vol.32 , Issue.9 , pp. 2294-2304
    • Whited, B.M.1    Whitney, J.R.2    Hofmann, M.C.3    Xu, Y.4    Rylander, M.N.5
  • 53
    • 0033023959 scopus 로고    scopus 로고
    • Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces
    • Degasne I, Baslé MF, Demais V, Huré G, Lesourd M, Grolleau B, Mercier L, Chappard D. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int. 1999;64:499–507.
    • (1999) Calcif Tissue Int , vol.64 , pp. 499-507
    • Degasne, I.1    Baslé, M.F.2    Demais, V.3    Huré, G.4    Lesourd, M.5    Grolleau, B.6    Mercier, L.7    Chappard, D.8
  • 54
    • 0033961642 scopus 로고    scopus 로고
    • Osteoblast adhesion on biomaterials
    • Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–81.
    • (2000) Biomaterials , vol.21 , Issue.7 , pp. 667-681
    • Anselme, K.1
  • 55
    • 42549151688 scopus 로고    scopus 로고
    • Comparison of physical, chemical and cellular responses to nano- and microsized calcium silicate/poly(epsilon-caprolactone) bioactive composites
    • Wei J, Heo SJ, Kim DH, Kim SE, Hyun YT, Shin JW. Comparison of physical, chemical and cellular responses to nano- and microsized calcium silicate/poly(epsilon-caprolactone) bioactive composites. J R Soc Interface. 2008;5:617–30.
    • (2008) J R Soc Interface , vol.5 , pp. 617-630
    • Wei, J.1    Heo, S.J.2    Kim, D.H.3    Kim, S.E.4    Hyun, Y.T.5    Shin, J.W.6
  • 56
    • 84860389855 scopus 로고    scopus 로고
    • Human osteoblast-like cell spreading and proliferation on Ti–6Al–7Nb surfaces of varying roughness
    • Osathanon T, Bespinyowong K, Arksornnukit M, Takahashi H, Pavasant P. Human osteoblast-like cell spreading and proliferation on Ti–6Al–7Nb surfaces of varying roughness. J Oral Sci. 2011;53:23–30.
    • (2011) J Oral Sci , vol.53 , pp. 23-30
    • Osathanon, T.1    Bespinyowong, K.2    Arksornnukit, M.3    Takahashi, H.4    Pavasant, P.5
  • 57
    • 19644367664 scopus 로고    scopus 로고
    • Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
    • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.
    • (2005) Nat Biotechnol , vol.23 , Issue.1 , pp. 47-55
    • Lutolf, M.P.1    Hubbell, J.A.2
  • 58
    • 4544386133 scopus 로고    scopus 로고
    • Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering
    • Xu C, Inai R, Kotaki M, Ramakrishna S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 2004;10:1160–8.
    • (2004) Tissue Eng , vol.10 , pp. 1160-1168
    • Xu, C.1    Inai, R.2    Kotaki, M.3    Ramakrishna, S.4
  • 59
    • 34548081519 scopus 로고    scopus 로고
    • Carbon nanotubes as scaffolds for cell culture and effect on cellular functions
    • Aoki N, Akasaka T, Watari F, Yokoyama A. Carbon nanotubes as scaffolds for cell culture and effect on cellular functions. Dent Mater J. 2007;26(2):178–85.
    • (2007) Dent Mater J , vol.26 , Issue.2 , pp. 178-185
    • Aoki, N.1    Akasaka, T.2    Watari, F.3    Yokoyama, A.4
  • 60
    • 0035116948 scopus 로고    scopus 로고
    • Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion
    • Hallab N, Bundy K, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001;71:55–71.
    • (2001) Tissue Eng , vol.71 , pp. 55-71
    • Hallab, N.1    Bundy, K.2    O’Connor, K.3    Moses, R.L.4    Jacobs, J.J.5
  • 62
    • 32544442333 scopus 로고    scopus 로고
    • Surface modification of poly(L-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin
    • Lin Y, Wang L, Zhang P, Wang X, Chen X, Jing X, Su Z. Surface modification of poly(L-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin. Acta Biomater. 2006;2:155–64.
    • (2006) Acta Biomater , vol.2 , pp. 155-164
    • Lin, Y.1    Wang, L.2    Zhang, P.3    Wang, X.4    Chen, X.5    Jing, X.6    Su, Z.7
  • 65
    • 84867506547 scopus 로고    scopus 로고
    • Charge assisted tailoring of chemical functionality at electrospun nanofiber surfaces
    • Stachewicz U, Stone CA, Willis CR, Barber AH. Charge assisted tailoring of chemical functionality at electrospun nanofiber surfaces. J Mater Chem. 2012;22:22935–41.
    • (2012) J Mater Chem , vol.22 , pp. 22935-22941
    • Stachewicz, U.1    Stone, C.A.2    Willis, C.R.3    Barber, A.H.4
  • 66
    • 0000769015 scopus 로고    scopus 로고
    • Osteoblasts
    • Koller MR, Palsson BO, Masters JRW, Koller MR, Palsson BO, Masters JRW, (eds), Kluwer Academic Publishers, Norwell, MA:
    • Di-Silvio L, Gurav N. Osteoblasts. In: Koller MR, Palsson BO, Masters JRW, Koller MR, Palsson BO, Masters JRW, editors. Primary mesenchymal cells. Norwell, MA: Kluwer Academic Publishers; 2001. p. 221–41.
    • (2001) Primary mesenchymal cells , pp. 221-241
    • Di-Silvio, L.1    Gurav, N.2
  • 67
    • 0026537256 scopus 로고
    • Concepts of osteoblast growth and differentiation—basis for modulation of bone cell-development and tissue formation
    • Lian JB, Stein GS. Concepts of osteoblast growth and differentiation—basis for modulation of bone cell-development and tissue formation. Crit Rev Oral Biol. 1992;3:269–305.
    • (1992) Crit Rev Oral Biol , vol.3 , pp. 269-305
    • Lian, J.B.1    Stein, G.S.2
  • 68
    • 67349198630 scopus 로고    scopus 로고
    • The fabrication of nano-hyroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behaviour for bone tissue engineering
    • Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S. The fabrication of nano-hyroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behaviour for bone tissue engineering. Bone. 2009;45:4–16.
    • (2009) Bone , vol.45 , pp. 4-16
    • Ngiam, M.1    Liao, S.2    Patil, A.J.3    Cheng, Z.4    Chan, C.K.5    Ramakrishna, S.6
  • 69
    • 0025316785 scopus 로고
    • Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix
    • Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990;143(3):420–30.
    • (1990) J Cell Physiol , vol.143 , Issue.3 , pp. 420-430
    • Owen, T.A.1    Aronow, M.2    Shalhoub, V.3    Barone, L.M.4    Wilming, L.5    Tassinari, M.S.6    Kennedy, M.B.7    Pockwinse, S.8    Lian, J.B.9    Stein, G.S.10
  • 71
    • 0034039641 scopus 로고    scopus 로고
    • Extracellular calcium-sensing-receptor (Car)-mediated opening of an outward K+ channel in Murine Mc3T3-E1 osteoblastic cells: evidence for expression of a functional car
    • Ye CP, Yamaguchi T, Chattopadhyay N, Sanders JL, Vassilev PM, Brown EM. Extracellular calcium-sensing-receptor (Car)-mediated opening of an outward K+ channel in Murine Mc3T3-E1 osteoblastic cells: evidence for expression of a functional car. Bone. 2000;27:21–7.
    • (2000) Bone , vol.27 , pp. 21-27
    • Ye, C.P.1    Yamaguchi, T.2    Chattopadhyay, N.3    Sanders, J.L.4    Vassilev, P.M.5    Brown, E.M.6
  • 72
    • 0031914768 scopus 로고    scopus 로고
    • Effects of extracellular calcium on the proliferation and differentiation of porcine osteoblasts in vitro
    • Eklou-Kalonji E, Denis I, Lieberherr M, Pointillart A. Effects of extracellular calcium on the proliferation and differentiation of porcine osteoblasts in vitro. Cell Tissue Res. 1998;292:163–71.
    • (1998) Cell Tissue Res , vol.292 , pp. 163-171
    • Eklou-Kalonji, E.1    Denis, I.2    Lieberherr, M.3    Pointillart, A.4
  • 73
    • 0023882543 scopus 로고
    • Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts
    • Silver IA, Murrills RJ, Etherington DJ. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res. 1988;175:266–76.
    • (1988) Exp Cell Res , vol.175 , pp. 266-276
    • Silver, I.A.1    Murrills, R.J.2    Etherington, D.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.