메뉴 건너뛰기




Volumn 47, Issue 49, 2014, Pages

On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials

Author keywords

intrinsic loss parameter; magnetic hyperthermia; specific absorption rate

Indexed keywords

ELECTROMAGNETIC WAVE ABSORPTION; HYPERTHERMIA THERAPY; MAGNETISM; NANOMAGNETICS; NANOPARTICLES;

EID: 84912127232     PISSN: 00223727     EISSN: 13616463     Source Type: Journal    
DOI: 10.1088/0022-3727/47/49/495003     Document Type: Article
Times cited : (324)

References (78)
  • 1
    • 84887639238 scopus 로고    scopus 로고
    • Magnetic hyperthermia in Nanoscience
    • Ortega D and Pankhurst Q A 2013 Magnetic hyperthermia in Nanoscience Nanostructures through Chemistry ed P O'Brien (Cambridge: The Royal Society of Chemistry) p 60-88
    • (2013) Nanostructures Through Chemistry , pp. 60-88
    • Ortega, D.1    Pankhurst, Q.A.2
  • 2
    • 16244406244 scopus 로고    scopus 로고
    • Use of magnetic nanoparticle heating in the treatment of breast cancer
    • Hilger I, Hergt R and Kaiser W A 2005 Use of magnetic nanoparticle heating in the treatment of breast cancer IEEE Proc. Nanobiotechnol. 152 33-9
    • (2005) IEEE Proc. Nanobiotechnol. , vol.152 , pp. 33-39
    • Hilger, I.1    Hergt, R.2    Kaiser, W.A.3
  • 3
    • 70450214847 scopus 로고    scopus 로고
    • Progress in applications of magnetic nanoparticles in biomedicine
    • Pankhurst Q A et al 2009 Progress in applications of magnetic nanoparticles in biomedicine J. Phys. D: Appl. Phys. 42 224001
    • (2009) J. Phys. D: Appl. Phys. , vol.42 , Issue.22
    • Pankhurst, Q.A.1
  • 4
    • 0041846627 scopus 로고    scopus 로고
    • Applications of magnetic nanoparticles in biomedicine
    • Pankhurst Q A et al 2003 Applications of magnetic nanoparticles in biomedicine J. Phys. D: Appl. Phys. 36 R167-81
    • (2003) J. Phys. D: Appl. Phys. , vol.36 , Issue.13 , pp. 167-R181
    • Pankhurst, Q.A.1
  • 5
    • 84887896318 scopus 로고    scopus 로고
    • Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy
    • Dutz S and Hergt R 2013 Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy Int. J. Hyperthermia 29 790-800
    • (2013) Int. J. Hyperthermia , vol.29 , pp. 790-800
    • Dutz, S.1    Hergt, R.2
  • 6
    • 84957606426 scopus 로고
    • Selective inductive heating of lymph nodes
    • Gilchrist R K et al 1957 Selective inductive heating of lymph nodes Ann. Surg. 146 596-606
    • (1957) Ann. Surg. , vol.146 , pp. 596-606
    • Gilchrist, R.K.1
  • 7
    • 28044437547 scopus 로고    scopus 로고
    • Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique
    • Johannsen M et al 2005 Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique Int. J. Hyperthermia 21 637-47
    • (2005) Int. J. Hyperthermia , vol.21 , pp. 637-647
    • Johannsen, M.1
  • 8
    • 54449098985 scopus 로고    scopus 로고
    • Clinical applications of magnetic nanoparticles for hyperthermia
    • Thiesen B and Jordan A 2008 Clinical applications of magnetic nanoparticles for hyperthermia Int. J. Hyperthermia 24 467-74
    • (2008) Int. J. Hyperthermia , vol.24 , pp. 467-474
    • Thiesen, B.1    Jordan, A.2
  • 10
    • 0026688509 scopus 로고
    • Principles of nerve and heart excitation by time-varying magnetic fields
    • Reilly J P 1992 Principles of nerve and heart excitation by time-varying magnetic fields Ann. New York Acad. Sci. 649 96-17
    • (1992) Ann. New York Acad. Sci. , vol.649 , pp. 96-17
    • Reilly, J.P.1
  • 12
    • 0012262743 scopus 로고    scopus 로고
    • Heating magnetic fluid with alternating magnetic field
    • Rosensweig R E 2002 Heating magnetic fluid with alternating magnetic field J. Magn. Magn. Mater. 252 370-4
    • (2002) J. Magn. Magn. Mater. , vol.252 , pp. 370-374
    • Rosensweig, R.E.1
  • 13
    • 64249160994 scopus 로고    scopus 로고
    • Suitability of commercial colloids for magnetic hyperthermia
    • Kallumadil M et al 2009 Suitability of commercial colloids for magnetic hyperthermia J. Magn. Magn. Mater. 321 1509-13
    • (2009) J. Magn. Magn. Mater. , vol.321 , pp. 1509-1513
    • Kallumadil, M.1
  • 14
    • 84887888961 scopus 로고    scopus 로고
    • Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia
    • Andreu I and Natividad E 2013 Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia Int. J. Hyperthermia 29 739-51
    • (2013) Int. J. Hyperthermia , vol.29 , pp. 739-751
    • Andreu, I.1    Natividad, E.2
  • 15
    • 64249157691 scopus 로고    scopus 로고
    • Adiabatic versus non-adiabatic determination of specific absorption rate of ferrofluids
    • Natividad E, Castro M and Mediano A 2009 Adiabatic versus non-adiabatic determination of specific absorption rate of ferrofluids J. Magn. Magn. Mater. 321 1497-500
    • (2009) J. Magn. Magn. Mater. , vol.321 , pp. 1497-1500
    • Natividad, E.1    Castro, M.2    Mediano, A.3
  • 16
    • 79960577212 scopus 로고    scopus 로고
    • Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields
    • Natividad E, Castro M and Mediano A 2011 Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields Appl. Phys. Lett. 98 243119
    • (2011) Appl. Phys. Lett. , vol.98
    • Natividad, E.1    Castro, M.2    Mediano, A.3
  • 17
    • 40549097843 scopus 로고    scopus 로고
    • Accurate measurement of the specific absorption rate using a suitable adiabatic magneto thermal setup
    • Natividad E, Castro M and Mediano A 2008 Accurate measurement of the specific absorption rate using a suitable adiabatic magneto thermal setup Appl. Phys. Lett. 92 093116
    • (2008) Appl. Phys. Lett. , vol.92
    • Natividad, E.1    Castro, M.2    Mediano, A.3
  • 18
    • 79959379734 scopus 로고    scopus 로고
    • Comparison between experimental and predicted specific absorption rate of functionalized iron oxide nanoparticle suspensions
    • Yuan Y and Tasciuc D-A B 2011 Comparison between experimental and predicted specific absorption rate of functionalized iron oxide nanoparticle suspensions J. Magn. Magn. Mater. 323 2463-9
    • (2011) J. Magn. Magn. Mater. , vol.323 , pp. 2463-2469
    • Yuan, Y.1    Tasciuc, D.-A.B.2
  • 20
    • 0000774732 scopus 로고
    • Newton's law of cooling - A critical assessment
    • O'Sullivan C T 1990 Newton's law of cooling - a critical assessment Am. J. Phys. 58 956-660
    • (1990) Am. J. Phys. , vol.58 , pp. 956-660
    • O'Sullivan, C.T.1
  • 21
    • 84865129243 scopus 로고    scopus 로고
    • Accurate determination of the specific absorption rate in super paramagnetic nanoparticles under non-adiabatic conditions
    • Teran F J et al 2012 Accurate determination of the specific absorption rate in super paramagnetic nanoparticles under non-adiabatic conditions Appl. Phys. Lett. 101 062413
    • (2012) Appl. Phys. Lett. , vol.101
    • Teran, F.J.1
  • 22
    • 0033154138 scopus 로고    scopus 로고
    • Application of magnetite ferrofluids for hyperthermia
    • Hiergeist R et al 1999 Application of magnetite ferrofluids for hyperthermia J. Magn. Magn. Mater. 201 420-2
    • (1999) J. Magn. Magn. Mater. , vol.201 , pp. 420-422
    • Hiergeist, R.1
  • 23
    • 0002419565 scopus 로고
    • Design of experiments in non-linear situations
    • Box G E P and Lucas H L 1959 Design of experiments in non-linear situations Biometrika 46 77-90
    • (1959) Biometrika , vol.46 , pp. 77-90
    • Box, G.E.P.1    Lucas, H.L.2
  • 24
    • 84885959415 scopus 로고    scopus 로고
    • Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field
    • Murase K et al 2013 Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field Physica Med. 29 624-30
    • (2013) Physica Med. , vol.29 , pp. 624-630
    • Murase, K.1
  • 25
    • 79960201376 scopus 로고    scopus 로고
    • Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields
    • Bordelon D E et al 2011 Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields J. Appl. Phys. 109 124904
    • (2011) J. Appl. Phys. , vol.109
    • Bordelon, D.E.1
  • 26
    • 84863149679 scopus 로고    scopus 로고
    • On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field
    • Huang S et al 2012 On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field Meas. Sci. Technol. 23 035701
    • (2012) Meas. Sci. Technol. , vol.23 , Issue.3
    • Huang, S.1
  • 27
    • 84871840125 scopus 로고    scopus 로고
    • Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field
    • Wang S-Y, Huang S and Borca-Tasciuc D 2013 Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field IEEE Trans. Magn. 49 255-62
    • (2013) IEEE Trans. Magn. , vol.49 , pp. 255-262
    • Wang, S.-Y.1    Huang, S.2    Borca-Tasciuc, D.3
  • 28
    • 0037068070 scopus 로고    scopus 로고
    • Critical review of small sample calorimetry: Improvement by auto-adaptive thermal shield control
    • Schnelle W and Gmelin E 2002 Critical review of small sample calorimetry: improvement by auto-adaptive thermal shield control Thermochim. Acta 391 41-9
    • (2002) Thermochim. Acta , vol.391 , pp. 41-49
    • Schnelle, W.1    Gmelin, E.2
  • 29
    • 54749099622 scopus 로고    scopus 로고
    • A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles
    • Lacroix L M, Carrey J and Respaud M 2008 A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles Rev. Sci. Instrum. 799 093909
    • (2008) Rev. Sci. Instrum. , vol.79 , Issue.9
    • Lacroix, L.M.1    Carrey, J.2    Respaud, M.3
  • 30
    • 84889025081 scopus 로고    scopus 로고
    • Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents
    • Liu X L et al 2014 Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents J. Mater. Chem. B 2 120-8
    • (2014) J. Mater. Chem. , vol.2 , pp. 120-128
    • Liu, X.L.1
  • 31
    • 84885109362 scopus 로고    scopus 로고
    • Strontium hexaferrite (SrFe12O19) based composites for hyperthermia applications
    • Rashid A U et al 2013 Strontium hexaferrite (SrFe12O19) based composites for hyperthermia applications J. Magn. Magn. Mater. 344 134-9
    • (2013) J. Magn. Magn. Mater. , vol.344 , pp. 134-139
    • Rashid, A.U.1
  • 32
    • 36048944242 scopus 로고    scopus 로고
    • Heating effect in biocompatible magnetic fluid
    • Skumiel A et al 2007 Heating effect in biocompatible magnetic fluid Int. J. Thermophys. 28 1461-9
    • (2007) Int. J. Thermophys. , vol.28 , pp. 1461-1469
    • Skumiel, A.1
  • 33
    • 58049216324 scopus 로고    scopus 로고
    • Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia
    • Hayashi K et al 2008 Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia J. Mater. Res. 23 3415-24
    • (2008) J. Mater. Res. , vol.23 , pp. 3415-3424
    • Hayashi, K.1
  • 34
    • 34648814039 scopus 로고    scopus 로고
    • Inductive heating of Mg ferrite powder in high-water content phantoms using ac magnetic field for local hyperthermia
    • Nomura S et al 2007 Inductive heating of Mg ferrite powder in high-water content phantoms using ac magnetic field for local hyperthermia Heat Transfer Eng. 28 1017-22
    • (2007) Heat Transfer Eng. , vol.28 , pp. 1017-1022
    • Nomura, S.1
  • 35
    • 46249125041 scopus 로고    scopus 로고
    • Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: Experimental study in agarose gel
    • Salloum M et al 2008 Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel Int. J. Hyperthermia 24 337-45
    • (2008) Int. J. Hyperthermia , vol.24 , pp. 337-345
    • Salloum, M.1
  • 36
    • 36448951996 scopus 로고    scopus 로고
    • Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia
    • Drake P et al 2007 Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia J. Mater. Chem. 17 4914-8
    • (2007) J. Mater. Chem. , vol.17 , pp. 4914-4918
    • Drake, P.1
  • 37
    • 84894179807 scopus 로고    scopus 로고
    • Iron oxide-based conjugates for cancer theragnostics
    • Nguyen X P et al 2012 Iron oxide-based conjugates for cancer theragnostics Adv. Nat. Sci.: Nanosci. Nanotechnol. 3 033001
    • (2012) Adv. Nat. Sci.: Nanosci. Nanotechnol. , vol.3 , Issue.3
    • Nguyen, X.P.1
  • 38
    • 84857910063 scopus 로고    scopus 로고
    • High heat generation ability in ac magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling
    • Aono H et al 2012 High heat generation ability in ac magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling J. Magn. Magn. Mater. 324 1985-91
    • (2012) J. Magn. Magn. Mater. , vol.324 , pp. 1985-1991
    • Aono, H.1
  • 39
    • 55349103812 scopus 로고    scopus 로고
    • Size dependent heat generation of magnetite nanoparticles under ac magnetic field for cancer therapy
    • Motoyama J et al 2008 Size dependent heat generation of magnetite nanoparticles under ac magnetic field for cancer therapy BioMagn. Res. Technol. 6 4
    • (2008) BioMagn. Res. Technol. , vol.6 , pp. 4
    • Motoyama, J.1
  • 40
    • 84862785843 scopus 로고    scopus 로고
    • Modified solenoid coil that efficiently produces high amplitude ac magnetic fields with enhanced uniformity for biomedical applications
    • Bordelon D E et al 2012 Modified solenoid coil that efficiently produces high amplitude ac magnetic fields with enhanced uniformity for biomedical applications IEEE Trans. Magn. 48 47-52
    • (2012) IEEE Trans. Magn. , vol.48 , pp. 47-52
    • Bordelon, D.E.1
  • 41
    • 79551635901 scopus 로고    scopus 로고
    • Heat dissipation characteristics of magnetite nanoparticles and their application to macrophage cells
    • Kasuya R et al 2010 Heat dissipation characteristics of magnetite nanoparticles and their application to macrophage cells Phys. Proc. 9 186-9
    • (2010) Phys. Proc. , vol.9 , pp. 186-189
    • Kasuya, R.1
  • 42
    • 79251585561 scopus 로고    scopus 로고
    • Sensitive high frequency ac susceptometry in magnetic nanoparticle applications
    • Ahrentorp F et al 2010 Sensitive high frequency ac susceptometry in magnetic nanoparticle applications AIP Conf. Proc. 1311 213-23
    • (2010) AIP Conf. Proc. , vol.1311 , pp. 213-223
    • Ahrentorp, F.1
  • 43
    • 82555183565 scopus 로고    scopus 로고
    • An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements
    • Cano M E et al 2011 An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements Rev. Sci. Instrum. 82 114904
    • (2011) Rev. Sci. Instrum. , vol.82
    • Cano, M.E.1
  • 44
    • 41949141758 scopus 로고    scopus 로고
    • Magnetic nanoparticles for cancer therapy
    • Goya G F, Grazu V and Ibarra M R 2008 Magnetic nanoparticles for cancer therapy Curr. Nanosci. 4 1-16
    • (2008) Curr. Nanosci. , vol.4 , pp. 1-16
    • Goya, G.F.1    Grazu, V.2    Ibarra, M.R.3
  • 45
    • 72049106137 scopus 로고    scopus 로고
    • Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia
    • Jordan A et al 2009 Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia Int. J. Hyperthermia 25 499-11
    • (2009) Int. J. Hyperthermia , vol.25 , pp. 499-411
    • Jordan, A.1
  • 46
    • 79959978260 scopus 로고    scopus 로고
    • Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles
    • Laurent S et al 2011 Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles Adv. Colloid Interface Sci. 166 8-23
    • (2011) Adv. Colloid Interface Sci. , vol.166 , pp. 8-23
    • Laurent, S.1
  • 48
    • 33744906740 scopus 로고    scopus 로고
    • Magnetic nanoparticle design for medical applications
    • Mornet S et al 2006 Magnetic nanoparticle design for medical applications Prog. Solid State Chem. 34 237-47
    • (2006) Prog. Solid State Chem. , vol.34 , pp. 237-247
    • Mornet, S.1
  • 49
    • 0242367237 scopus 로고    scopus 로고
    • Size dependence of specific power absorption of Fe3O4 particles in ac magnetic field
    • Ma M et al 2004 Size dependence of specific power absorption of Fe3O4 particles in ac magnetic field J. Magn. Magn. Mater. 268 33-9
    • (2004) J. Magn. Magn. Mater. , vol.268 , pp. 33-39
    • Ma, M.1
  • 50
    • 84878466068 scopus 로고    scopus 로고
    • Evaluation of magnetic nanoparticle samples made from biocompatible ferucarbotran by time-correlation magnetic particle imaging reconstruction method
    • Ishihara Y et al 2013 Evaluation of magnetic nanoparticle samples made from biocompatible ferucarbotran by time-correlation magnetic particle imaging reconstruction method BMC Med. Imaging 13 1-10
    • (2013) BMC Med. Imaging , vol.13 , pp. 1-10
    • Ishihara, Y.1
  • 51
    • 0038756705 scopus 로고    scopus 로고
    • Ferucarbotran (Resovist): A new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: Properties, clinical development, and applications
    • Reimer P and Balzer T 2003 Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications Eur. Radiol. 13 1266-76
    • (2003) Eur. Radiol. , vol.13 , pp. 1266-1276
    • Reimer, P.1    Balzer, T.2
  • 52
    • 84875412321 scopus 로고    scopus 로고
    • Antitumor effects of inductive hyperthermia using magnetic ferucarbotran nanoparticles on human lung cancer xenografts in nude mice
    • Araya T et al 2013 Antitumor effects of inductive hyperthermia using magnetic ferucarbotran nanoparticles on human lung cancer xenografts in nude mice Onco Targets Ther. 6 237-42
    • (2013) Onco Targets Ther. , vol.6 , pp. 237-242
    • Araya, T.1
  • 53
    • 44449175617 scopus 로고    scopus 로고
    • Selective induction hyperthermia following transcatheter arterial embolization with a mixture of nano-sized magnetic particles (ferucarbotran) and embolic materials: Feasibility study in rabbits
    • Takamatsu S et al 2008 Selective induction hyperthermia following transcatheter arterial embolization with a mixture of nano-sized magnetic particles (ferucarbotran) and embolic materials: feasibility study in rabbits Radiat. Med. 26 179-87
    • (2008) Radiat. Med. , vol.26 , pp. 179-187
    • Takamatsu, S.1
  • 54
    • 53149134257 scopus 로고    scopus 로고
    • Processing technologies for poly(lactic acid)
    • Lim L T, Auras R and Rubino M 2008 Processing technologies for poly(lactic acid) Prog. Polym. Sci. 33 820-52
    • (2008) Prog. Polym. Sci. , vol.33 , pp. 820-852
    • Lim, L.T.1    Auras, R.2    Rubino, M.3
  • 55
    • 84891476880 scopus 로고    scopus 로고
    • Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application
    • Patil R M et al 2014 Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application RSC Adv. 4 4515-22
    • (2014) RSC Adv. , vol.4 , pp. 4515-4522
    • Patil, R.M.1
  • 56
    • 64249143013 scopus 로고    scopus 로고
    • Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia
    • Suto M et al 2009 Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia J. Magn. Magn. Mater. 321 1493-6
    • (2009) J. Magn. Magn. Mater. , vol.321 , pp. 1493-1496
    • Suto, M.1
  • 57
    • 80053532692 scopus 로고    scopus 로고
    • Self-heating property of magnetite nanoparticles dispersed in solution
    • Kobayashi H et al 2011 Self-heating property of magnetite nanoparticles dispersed in solution IEEE Trans. Magn. 47 4151-4
    • (2011) IEEE Trans. Magn. , vol.47 , pp. 4151-4154
    • Kobayashi, H.1
  • 58
    • 84865674916 scopus 로고    scopus 로고
    • Study of carbon encapsulated iron oxide/iron carbide nanocomposite for hyperthermia
    • Sharma M S, Mantri and Bahadur D 2012 Study of carbon encapsulated iron oxide/iron carbide nanocomposite for hyperthermia J. Magn. Magn. Mater. 324 3975-80
    • (2012) J. Magn. Magn. Mater. , vol.324 , pp. 3975-3980
    • Sharma, M.S.1    Mantri2    Bahadur, D.3
  • 59
    • 0036187006 scopus 로고    scopus 로고
    • Heating potential of iron oxides for therapeutic purposes in interventional radiology
    • Hilger I et al 2002 Heating potential of iron oxides for therapeutic purposes in interventional radiology Acad. Radiol. 9 198-202
    • (2002) Acad. Radiol. , vol.9 , pp. 198-202
    • Hilger, I.1
  • 60
    • 84871550109 scopus 로고    scopus 로고
    • Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents
    • Lartigue L et al 2012 Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents ACS Nano 6 10935-49
    • (2012) ACS Nano , vol.6 , pp. 10935-10949
    • Lartigue, L.1
  • 61
    • 84891377631 scopus 로고    scopus 로고
    • The heating effect of iron-cobalt magnetic nanofluids in an alternating magnetic field: Application in magnetic hyperthermia treatment
    • Shokuhfar A and Seyyed Afghahi S 2013 The heating effect of iron-cobalt magnetic nanofluids in an alternating magnetic field: application in magnetic hyperthermia treatment Nanoscale Res. Lett. 8 1-11
    • (2013) Nanoscale Res. Lett. , vol.8 , pp. 1-11
    • Shokuhfar, A.1    Seyyed Afghahi, S.2
  • 62
    • 64249089911 scopus 로고    scopus 로고
    • Biocompatible high-moment FeCo-Au magnetic nanoparticles for magnetic hyperthermia treatment optimization
    • Kline T L et al 2009 Biocompatible high-moment FeCo-Au magnetic nanoparticles for magnetic hyperthermia treatment optimization J. Magn. Magn. Mater. 321 1525-8
    • (2009) J. Magn. Magn. Mater. , vol.321 , pp. 1525-1528
    • Kline, T.L.1
  • 63
    • 82555192613 scopus 로고    scopus 로고
    • Optimal size of nanoparticles for magnetic hyperthermia: A combined theoretical and experimental study
    • Mehdaoui B et al 2011 Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study Adv. Funct. Mater. 21 4573-81
    • (2011) Adv. Funct. Mater. , vol.21 , pp. 4573-4581
    • Mehdaoui, B.1
  • 64
    • 79956116643 scopus 로고    scopus 로고
    • Effect of aligning magnetic field on the magnetic and calorimetric properties of ferrimagnetic bioactive glass ceramics for the hyperthermia treatment of cancer
    • Shah S A, Hashmi M U and Alam S 2011 Effect of aligning magnetic field on the magnetic and calorimetric properties of ferrimagnetic bioactive glass ceramics for the hyperthermia treatment of cancer Mater. Sci. Eng.: C 31 1010-6
    • (2011) Mater. Sci. Eng. , vol.31 , pp. 1010-1016
    • Shah, S.A.1    Hashmi, M.U.2    Alam, S.3
  • 65
    • 82555180571 scopus 로고    scopus 로고
    • The Design of a half-bridge series-resonant type heating system for magnetic nanoparticle thermotherapy
    • Tai C-C and Chen C-C 2008 The Design of a half-bridge series-resonant type heating system for magnetic nanoparticle thermotherapy PIERS Online 4 276-80
    • (2008) PIERS Online , vol.4 , pp. 276-280
    • Tai, C.-C.1    Chen, C.-C.2
  • 66
    • 84876692635 scopus 로고    scopus 로고
    • Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles
    • Lima E Jr et al 2013 Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles J. Nanopart. Res. 15 1654
    • (2013) J. Nanopart. Res. , vol.15 , Issue.5 , pp. 1654
    • Ejr, L.1
  • 67
    • 79953267925 scopus 로고    scopus 로고
    • Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells
    • Marcos-Campos I et al 2011 Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells Nanotechnology 22 205101
    • (2011) Nanotechnology , vol.22 , Issue.20
    • Marcos-Campos, I.1
  • 68
    • 78651484674 scopus 로고    scopus 로고
    • Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing super paramagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia
    • Le Renard P-E et al 2011 Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing super paramagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia J. Magn. Magn. Mater. 323 1054-63
    • (2011) J. Magn. Magn. Mater. , vol.323 , pp. 1054-1063
    • Le Renard, P.-E.1
  • 69
    • 64249099090 scopus 로고    scopus 로고
    • Magnetic properties and heating effect in bacterial magnetic nanoparticles
    • Timko M et al 2009 Magnetic properties and heating effect in bacterial magnetic nanoparticles J. Magn. Magn. Mater. 321 1521-4
    • (2009) J. Magn. Magn. Mater. , vol.321 , pp. 1521-1524
    • Timko, M.1
  • 70
    • 33847753454 scopus 로고    scopus 로고
    • Measurement of specific absorption rate and thermal simulation for arterial embolization hyperthermia in the maghemite-gelled model
    • Xu R et al 2007 Measurement of specific absorption rate and thermal simulation for arterial embolization hyperthermia in the maghemite-gelled model IEEE Trans. Magn. 43 1078-85
    • (2007) IEEE Trans. Magn. , vol.43 , pp. 1078-1085
    • Xu, R.1
  • 72
    • 84874026639 scopus 로고    scopus 로고
    • Surface functionalized LSMO nanoparticles with improved colloidal stability for hyperthermia applications
    • Thorat N D et al 2013 Surface functionalized LSMO nanoparticles with improved colloidal stability for hyperthermia applications J. Phys. D: Appl. Phys. 46 105003
    • (2013) J. Phys. D: Appl. Phys. , vol.46 , Issue.10
    • Thorat, N.D.1
  • 73
    • 84871982287 scopus 로고    scopus 로고
    • Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia
    • Khot V M et al 2013 Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia Dalton Trans. 42 1249-58
    • (2013) Dalton Trans. , vol.42 , pp. 1249-1258
    • Khot, V.M.1
  • 74
    • 84894127433 scopus 로고    scopus 로고
    • Magnetic heating characteristics of la 0.7 Sr x Ca 0.3- x MnO 3 nanoparticles fabricated by a high energy mechanical milling method
    • Do H M et al 2011 Magnetic heating characteristics of La 0.7 Sr x Ca 0.3- x MnO 3 nanoparticles fabricated by a high energy mechanical milling method Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 035003
    • (2011) Adv. Nat. Sci.: Nanosci. Nanotechnol. , vol.2 , Issue.3
    • Do, H.M.1
  • 75
    • 84862966862 scopus 로고    scopus 로고
    • Biomedical and environmental applications of magnetic nanoparticles
    • Tran D L et al 2010 Biomedical and environmental applications of magnetic nanoparticles Adv. Nat. Sci.: Nanosci. Nanotechnol. 1 045013
    • (2010) Adv. Nat. Sci.: Nanosci. Nanotechnol. , vol.1 , Issue.4
    • Tran, D.L.1
  • 77
    • 1242343873 scopus 로고    scopus 로고
    • Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene
    • Weidenfeller B, Höfer M and Schilling F R 2004 Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene Compos. Part A: Appl. Sci. Manuf. 35 423-9
    • (2004) Compos. Part A: Appl. Sci. Manuf. , vol.35 , pp. 423-429
    • Weidenfeller, B.1    Höfer, M.2    Schilling, F.R.3
  • 78
    • 10644239267 scopus 로고    scopus 로고
    • Integrated genetic analysis microsystems
    • Lagally E T and Mathies R A 2004 Integrated genetic analysis microsystems J. Phys. D: Appl. Phys. 37 R245-61
    • (2004) J. Phys. D: Appl. Phys. , vol.37 , Issue.23 , pp. 245-R261
    • Lagally, E.T.1    Mathies, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.