메뉴 건너뛰기




Volumn 19, Issue 8, 2014, Pages 1139-1162

Artificial neural networks models for predicting effective drought index: Factoring effects of rainfall variability

Author keywords

Artificial Neural Networks(ANNs); Available Water Resource Index(AWRI); Drought Forecasts; Effective Drought Index(EDI); Kenya; Rainfall Variations

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CLIMATE PREDICTION; CLIMATE VARIATION; DROUGHT STRESS; PRECIPITATION INTENSITY; RAINFED AGRICULTURE; SPATIAL DISTRIBUTION; WEATHER STATION;

EID: 84911976740     PISSN: 13812386     EISSN: 15731596     Source Type: Journal    
DOI: 10.1007/s11027-013-9464-0     Document Type: Article
Times cited : (33)

References (35)
  • 4
    • 0035714592 scopus 로고    scopus 로고
    • Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia
    • Bodri L, Cermak V (2001) Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia. Journal of Environmental Informatics 45:155–167
    • (2001) Journal of Environmental Informatics , vol.45 , pp. 155-167
    • Bodri, L.1    Cermak, V.2
  • 5
    • 0033190381 scopus 로고    scopus 로고
    • Objective quantification of drought severity and duration
    • Byun H, Wilhite DA (1999) Objective quantification of drought severity and duration. J Clim 12:2747–2756
    • (1999) J Clim , vol.12 , pp. 2747-2756
    • Byun, H.1    Wilhite, D.A.2
  • 7
    • 77950867287 scopus 로고    scopus 로고
    • Development and application of a decision group Back-Propagation Neural Network for flood forecasting
    • Chang-Shian C, Boris P, Chen F, Chou N, Chao-Chung Y (2010) Development and application of a decision group Back-Propagation Neural Network for flood forecasting. J Hydrol 385:173–182
    • (2010) J Hydrol , vol.385 , pp. 173-182
    • Chang-Shian, C.1    Boris, P.2    Chen, F.3    Chou, N.4    Chao-Chung, Y.5
  • 10
    • 0003396255 scopus 로고    scopus 로고
    • MATLAB Neural Network Toolbox – User’s Guide
    • 6
    • Demuth, H., Mark, B. and Martin, H. 2009. MATLAB Neural Network Toolbox – User’s Guide. 6
    • (2009)
    • Demuth, H.1    Mark, B.2    Martin, H.3
  • 12
    • 43449097508 scopus 로고    scopus 로고
    • SPI-Based Drought Category Predication Using Loglinear Models
    • Elsa E, Moreira C, Coelho A, Paulo AA (2008) SPI-Based Drought Category Predication Using Loglinear Models. J Hydrol 354:116–130
    • (2008) J Hydrol , vol.354 , pp. 116-130
    • Elsa, E.1    Moreira, C.2    Coelho, A.3    Paulo, A.A.4
  • 13
    • 3342963984 scopus 로고    scopus 로고
    • Drought prediction and characteristic analysis in semiarid Cearâ, northeast Brazil. Sustainability of Water Resources under Increasing Uncertainty, Anonymous IAHS
    • Freitas, M.A.S. and Billib, M.H.A. 1997. Drought prediction and characteristic analysis in semiarid Cearâ, northeast Brazil. Sustainability of Water Resources under Increasing Uncertainty, Anonymous IAHS, No. 240,, 105.
    • (1997) No. 240 , pp. 105
    • Freitas, M.A.S.1    Billib, M.H.A.2
  • 14
  • 15
    • 70349973175 scopus 로고    scopus 로고
    • Evaluation, modification, and application of the Effective Drought Index to 200-Year drought climatology of Seoul, Korea
    • Kim D, Hi-Ryong B, Ki-Seon C (2009) Evaluation, modification, and application of the Effective Drought Index to 200-Year drought climatology of Seoul, Korea. J Hydrol 378:1–12
    • (2009) J Hydrol , vol.378 , pp. 1-12
    • Kim, D.1    Hi-Ryong, B.2    Ki-Seon, C.3
  • 16
    • 33746875596 scopus 로고    scopus 로고
    • Drought forecast model and framework using wireless sensor networks
    • Kung H, Hua J, Chen C (2006) Drought forecast model and framework using wireless sensor networks. J Inf Sci Eng 22:751–769
    • (2006) J Inf Sci Eng , vol.22 , pp. 751-769
    • Kung, H.1    Hua, J.2    Chen, C.3
  • 17
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15(1):101–124
    • (2000) Environ Model Softw , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 18
    • 84911975920 scopus 로고    scopus 로고
    • The Role of ICTs in Quantifying the Severity and Duration of Climatic Variations – Kenya’s Case, Proceedings of ITU Kaleidoscope 2011: The Fully Networked Human? - Innovations for Future Networks and Services (K-2011), 12–14 December 2011
    • Masinde, M. and Bagula, A., 2011. The Role of ICTs in Quantifying the Severity and Duration of Climatic Variations – Kenya’s Case, Proceedings of ITU Kaleidoscope 2011: The Fully Networked Human? - Innovations for Future Networks and Services (K-2011), 12–14 December 2011, IEEE Xplore, pp. 1–8
    • (2011) IEEE Xplore , pp. 1-8
    • Masinde, M.1    Bagula, A.2
  • 19
    • 84911974727 scopus 로고    scopus 로고
    • ITIKI: bridge between African indigenous knowledge and modern science of drought prediction
    • Masinde M, Bagula A (2012) ITIKI: bridge between African indigenous knowledge and modern science of drought prediction. Knowl Manag Dev J 7(03):274–290
    • (2012) Knowl Manag Dev J , vol.7 , Issue.3 , pp. 274-290
    • Masinde, M.1    Bagula, A.2
  • 20
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • Mcculloch WS, Pitts W (1943) A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys 5:115–133
    • (1943) Bull Math Biophys , vol.5 , pp. 115-133
    • Mcculloch, W.S.1    Pitts, W.2
  • 21
    • 0001895140 scopus 로고
    • The relationship of drought frequency and duration to time scales
    • Anonymous American Meteorological Society, Boston, Massachusetts:
    • Mckee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: 8th Conference on Applied Climatology, January. Anonymous American Meteorological Society, Boston, Massachusetts, pp 17–23
    • (1993) 8th Conference on Applied Climatology, January , pp. 17-23
    • Mckee, T.B.1    Doesken, N.J.2    Kleist, J.3
  • 22
    • 33747853860 scopus 로고    scopus 로고
    • Drought Forecasting Using Fee-Forward Recursive Neural Network
    • Mishra AK, Desai VR (2006) Drought Forecasting Using Fee-Forward Recursive Neural Network. Ecol Model 198:128–138
    • (2006) Ecol Model , vol.198 , pp. 128-138
    • Mishra, A.K.1    Desai, V.R.2
  • 23
    • 77956191461 scopus 로고    scopus 로고
    • A Review of Drought Concepts
    • Mishra AK, Singn VP (2010) A Review of Drought Concepts. J Hydrol 391:202–216
    • (2010) J Hydrol , vol.391 , pp. 202-216
    • Mishra, A.K.1    Singn, V.P.2
  • 24
    • 37249024658 scopus 로고    scopus 로고
    • Drought forecasting using artificial neural networks and time series of drought indices
    • Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural networks and time series of drought indices. Int J Climatol 27:2103–2111
    • (2007) Int J Climatol , vol.27 , pp. 2103-2111
    • Morid, S.1    Smakhtin, V.2    Bagherzadeh, K.3
  • 25
    • 84911962628 scopus 로고    scopus 로고
    • Mutua, S., 2011. Strengthening Drought Early Warning At The Community and District Levels: Analysis Of Traditional Community Warning Systems In Wajir & Turkana
    • Mutua, S., 2011. Strengthening Drought Early Warning At The Community and District Levels: Analysis Of Traditional Community Warning Systems In Wajir & Turkana
  • 27
    • 0003255373 scopus 로고
    • Meteorological Drought. Research Paper 45. US Department of Commerce, Weather Bureau, Washington
    • Palmer, W.C., 1965. Meteorological Drought. Research Paper 45. US Department of Commerce, Weather Bureau, Washington, DC, pp. 1–58.
    • (1965) DC , pp. 1-58
    • Palmer, W.C.1
  • 28
    • 0036059051 scopus 로고    scopus 로고
    • Challenges in drought research: some perspectives and future directions
    • Panu, U.S. and Sharma, T.C. 2002. Challenges in drought research: some perspectives and future directions. Hydrological Sciences-Journal.
    • (2002) Hydrological Sciences-Journal
    • Panu, U.S.1    Sharma, T.C.2
  • 30
    • 0034174278 scopus 로고    scopus 로고
    • Regional drought analysis based on neural networks
    • Shin HS, Salas JD (2000) Regional drought analysis based on neural networks. J Hydrol Eng 5(2):145–155
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 145-155
    • Shin, H.S.1    Salas, J.D.2
  • 31
    • 0344038754 scopus 로고    scopus 로고
    • Linear versus nonlinear techniques in downscaling
    • Weichert A, Burger G (1998) Linear versus nonlinear techniques in downscaling. Clim Res 10:83–93
    • (1998) Clim Res , vol.10 , pp. 83-93
    • Weichert, A.1    Burger, G.2
  • 32
    • 3242673143 scopus 로고    scopus 로고
    • A self-calibrating palmer drought severity index
    • Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17:2335–2351
    • (2004) J Clim , vol.17 , pp. 2335-2351
    • Wells, N.1    Goddard, S.2    Hayes, M.J.3
  • 33
    • 84911976438 scopus 로고    scopus 로고
    • WHO Collaborating Centre For Research On The Epidemiology of Disasters (CRED), 2012-last update, Emergency Events Database (EM-DAT) [Homepage of Government of Belgium, for WHO], [Online]. Available: [May/11, 2012]
    • WHO Collaborating Centre For Research On The Epidemiology of Disasters (CRED), 2012-last update, Emergency Events Database (EM-DAT) [Homepage of Government of Belgium, for WHO], [Online]. Available: http://www.emdat.be/ [May/11, 2012].
  • 34
    • 0022195325 scopus 로고
    • Understanding the drought phenomenon: the role of definitions
    • Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water International 10:111–120
    • (1985) Water International , vol.10 , pp. 111-120
    • Wilhite, D.A.1    Glantz, M.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.