메뉴 건너뛰기




Volumn 181, Issue , 2015, Pages 108-112

Application of artificial neural networks to predict the final fruit weight and random forest to select important variables in native population of melon (Cucumis melo. Pahlavan)

Author keywords

Artificial neural network (ANN); Fruit weight; Melon; Model; Random forest; Sistan

Indexed keywords

AGRONOMY; ARTIFICIAL NEURAL NETWORK; CROP YIELD; CULTIVAR; FRUIT; HORTICULTURE; NATIVE SPECIES; PHENOLOGY; WEIGHT;

EID: 84911870584     PISSN: 03044238     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.scienta.2014.10.025     Document Type: Article
Times cited : (59)

References (24)
  • 1
    • 30144441530 scopus 로고    scopus 로고
    • Experimental and neural network prediction of the performance of a solar tunnel drier for a solar drying jack fruit bulbs and leather
    • Bala B., Ashraf M., Uddin M., Janjai S. Experimental and neural network prediction of the performance of a solar tunnel drier for a solar drying jack fruit bulbs and leather. J. Food Proc. Eng. 2005, 28:552-566.
    • (2005) J. Food Proc. Eng. , vol.28 , pp. 552-566
    • Bala, B.1    Ashraf, M.2    Uddin, M.3    Janjai, S.4
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 3
    • 33749394052 scopus 로고    scopus 로고
    • Heritability, heterosis and correlations of fruit characters and yield in Thai Slicing Melon (Cucumis melo L. var. conomon Makino)
    • Chamnan L., Kasem P. Heritability, heterosis and correlations of fruit characters and yield in Thai Slicing Melon (Cucumis melo L. var. conomon Makino). Kasetsart J. (Nat. Sci.) 2006, 40:20-25.
    • (2006) Kasetsart J. (Nat. Sci.) , vol.40 , pp. 20-25
    • Chamnan, L.1    Kasem, P.2
  • 4
    • 84911896981 scopus 로고    scopus 로고
    • Assessment of phenotypic variability, heritable components and character association in egusi melon American-Eurasian
    • Emeka N., Justin O., Agbo C. Assessment of phenotypic variability, heritable components and character association in egusi melon American-Eurasian. J. Agric. Environ. Sci. 2013, 13:961-966.
    • (2013) J. Agric. Environ. Sci. , vol.13 , pp. 961-966
    • Emeka, N.1    Justin, O.2    Agbo, C.3
  • 5
    • 47549093934 scopus 로고    scopus 로고
    • Artificial neural network models for predicting soil thermal resistivity
    • Erzin Y., Rao H., Singh D. Artificial neural network models for predicting soil thermal resistivity. Int. J. Ther. Sci. Algor. 2008, 47:1347-1358.
    • (2008) Int. J. Ther. Sci. Algor. , vol.47 , pp. 1347-1358
    • Erzin, Y.1    Rao, H.2    Singh, D.3
  • 6
    • 69249145267 scopus 로고    scopus 로고
    • Correlation and sequential path model for some yield-related traits in melon (Cucumis melo L.)
    • Feyzian E., Dehghani H., Rezai A., Jalali M. Correlation and sequential path model for some yield-related traits in melon (Cucumis melo L.). J. Agric. Sci. Technol. 2009, 11:341-353.
    • (2009) J. Agric. Sci. Technol. , vol.11 , pp. 341-353
    • Feyzian, E.1    Dehghani, H.2    Rezai, A.3    Jalali, M.4
  • 7
    • 33750514454 scopus 로고    scopus 로고
    • Prentice Hall, Princeton
    • Haykin S. Neural Computing 2008, Prentice Hall, Princeton, 842 pp. 2nd ed.
    • (2008) Neural Computing , pp. 842
    • Haykin, S.1
  • 8
    • 72149092251 scopus 로고    scopus 로고
    • Forecasting maturity of green peas: an application of neural networks
    • Higgins A., Prestwidge Di Tirling S.D., Yost J. Forecasting maturity of green peas: an application of neural networks. Comp. Elect. Agric. 2010, 70:151-156.
    • (2010) Comp. Elect. Agric. , vol.70 , pp. 151-156
    • Higgins, A.1    Prestwidge Di Tirling, S.D.2    Yost, J.3
  • 9
    • 0034213207 scopus 로고    scopus 로고
    • Contribution of agrometeorology to the Simulation of Crop Production and Its Applications
    • Hoogenboom G. Contribution of agrometeorology to the Simulation of Crop Production and Its Applications. Agric. For. Meteorol. 2000, 103:137-157.
    • (2000) Agric. For. Meteorol. , vol.103 , pp. 137-157
    • Hoogenboom, G.1
  • 10
    • 1942504231 scopus 로고    scopus 로고
    • An artificial neural network model for estimating crop yields using remotely sensed information
    • Jiang S., Jiang D., Yang X., Clinton N., Wang N. An artificial neural network model for estimating crop yields using remotely sensed information. J. Remote Sens. 2004, 25:1723-1732.
    • (2004) J. Remote Sens. , vol.25 , pp. 1723-1732
    • Jiang, S.1    Jiang, D.2    Yang, X.3    Clinton, N.4    Wang, N.5
  • 11
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw A., Wiener M. Classification and regression by random forest. R News 2002, 2:18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 12
    • 34848923325 scopus 로고    scopus 로고
    • Modelling of tomato drying using artificial neural network
    • Movagharnejad K., Nikzad M. Modelling of tomato drying using artificial neural network. Comp. Elect. Agric. 2007, 59:78-85.
    • (2007) Comp. Elect. Agric. , vol.59 , pp. 78-85
    • Movagharnejad, K.1    Nikzad, M.2
  • 13
    • 84911932769 scopus 로고    scopus 로고
    • Evaluation of agronomic traits in native population of melon
    • Naroui Rad M., Allahdo M., Fanaei H. Evaluation of agronomic traits in native population of melon. Iran. J. Hortic. 2010, 40:53-59.
    • (2010) Iran. J. Hortic. , vol.40 , pp. 53-59
    • Naroui Rad, M.1    Allahdo, M.2    Fanaei, H.3
  • 14
    • 85006577864 scopus 로고    scopus 로고
    • Study on morphologic variation of different Iranian melon cultivars
    • Nasrabadi N., Nemati H., Sobhani A., Sharif M. Study on morphologic variation of different Iranian melon cultivars. Afr. J. Agric. Res. 2012, 7:2764-2769.
    • (2012) Afr. J. Agric. Res. , vol.7 , pp. 2764-2769
    • Nasrabadi, N.1    Nemati, H.2    Sobhani, A.3    Sharif, M.4
  • 15
    • 80051774000 scopus 로고    scopus 로고
    • Application of vegetation indices for agricultural crop yield prediction using neural network techniques
    • Panda S., Ames D., Panigrahi S. Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sens. 2010, 2:673-696.
    • (2010) Remote Sens. , vol.2 , pp. 673-696
    • Panda, S.1    Ames, D.2    Panigrahi, S.3
  • 16
    • 84862676014 scopus 로고    scopus 로고
    • Use of random forests for modeling and mapping forest canopy fuels for fire behavior analysis in Lassen Volcanic National Park, California, USA
    • Pierce A., Faris C., Taylor A. Use of random forests for modeling and mapping forest canopy fuels for fire behavior analysis in Lassen Volcanic National Park, California, USA. Forest Ecol. Manage. 2012, 279:77-89.
    • (2012) Forest Ecol. Manage. , vol.279 , pp. 77-89
    • Pierce, A.1    Faris, C.2    Taylor, A.3
  • 18
    • 84875789592 scopus 로고    scopus 로고
    • Utilization of artificial neural networks in the prediction of the bunches' weight in banana plants
    • Soares J., Pasqual M., Lacerda W., Silva S., Donato S. Utilization of artificial neural networks in the prediction of the bunches' weight in banana plants. Sci. Hortic. 2013, 155:24-29.
    • (2013) Sci. Hortic. , vol.155 , pp. 24-29
    • Soares, J.1    Pasqual, M.2    Lacerda, W.3    Silva, S.4    Donato, S.5
  • 19
    • 84911916410 scopus 로고    scopus 로고
    • Application of artificial neural network (ANN) for the prediction of water treatment plant influent characteristics
    • Solaimany-Aminabad M., Maleki A., Mahdi H. Application of artificial neural network (ANN) for the prediction of water treatment plant influent characteristics. J. Adv. Environ. Health Res. 2013, 1:1-12.
    • (2013) J. Adv. Environ. Health Res. , vol.1 , pp. 1-12
    • Solaimany-Aminabad, M.1    Maleki, A.2    Mahdi, H.3
  • 20
    • 33748714494 scopus 로고    scopus 로고
    • Correlation among growth, yield and quality characters in Cucumis melo L
    • Taha M., Omara K., El Jack A. Correlation among growth, yield and quality characters in Cucumis melo L. Cucurbit Genet. Coop. Rep. 2003, 26:9-11.
    • (2003) Cucurbit Genet. Coop. Rep. , vol.26 , pp. 9-11
    • Taha, M.1    Omara, K.2    El Jack, A.3
  • 21
    • 16844366163 scopus 로고    scopus 로고
    • Artificial neural networks to predict corn yield from compact airborne spectrographic imager data
    • Uno Y., Prasher S., Lacroix R., Goel P., Karimi Y., Viau A., Patel R. Artificial neural networks to predict corn yield from compact airborne spectrographic imager data. Comp. Elect. Agric. 2005, 47:149-161.
    • (2005) Comp. Elect. Agric. , vol.47 , pp. 149-161
    • Uno, Y.1    Prasher, S.2    Lacroix, R.3    Goel, P.4    Karimi, Y.5    Viau, A.6    Patel, R.7
  • 22
    • 80054100940 scopus 로고    scopus 로고
    • Estimation of rice neck blasts severity using spectral reflectance based on BP-neural network
    • Zhang H., Hu H., Zhang X., Zhu L., Zheng K., Jin Q., Zeng F. Estimation of rice neck blasts severity using spectral reflectance based on BP-neural network. Acta Physiol. Plant. 2011, 33:2461-2466.
    • (2011) Acta Physiol. Plant. , vol.33 , pp. 2461-2466
    • Zhang, H.1    Hu, H.2    Zhang, X.3    Zhu, L.4    Zheng, K.5    Jin, Q.6    Zeng, F.7
  • 23
    • 84868589048 scopus 로고    scopus 로고
    • Prediction of crude protein content in rice grain with canopy spectral reflectance
    • Zhang H., Song T., Wang K., Wang G., Hu H., Zeng F. Prediction of crude protein content in rice grain with canopy spectral reflectance. Plant Soil Environ. 2012, 58:514-520.
    • (2012) Plant Soil Environ. , vol.58 , pp. 514-520
    • Zhang, H.1    Song, T.2    Wang, K.3    Wang, G.4    Hu, H.5    Zeng, F.6
  • 24
    • 33846681532 scopus 로고    scopus 로고
    • Neural network modeling of ecosystems: a case study on cabbage growth system
    • Zhang W., Bai X., Liu G. Neural network modeling of ecosystems: a case study on cabbage growth system. Ecol. Model 2007, 201:3-4.
    • (2007) Ecol. Model , vol.201 , pp. 3-4
    • Zhang, W.1    Bai, X.2    Liu, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.