메뉴 건너뛰기




Volumn 9, Issue 11, 2014, Pages

Ensemble-based network aggregation improves the accuracy of gene network reconstruction

Author keywords

[No Author keywords available]

Indexed keywords

MESSENGER RNA;

EID: 84911409703     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0106319     Document Type: Article
Times cited : (29)

References (52)
  • 1
    • 84885466653 scopus 로고    scopus 로고
    • High-throughput methods for combinatorial drug discovery
    • 205rv201
    • Sun X, Vilar S, Tatonetti NP (2013) High-throughput methods for combinatorial drug discovery. Sci Transl Med 5: 205rv201.
    • (2013) Sci Transl Med , vol.5
    • Sun, X.1    Vilar, S.2    Tatonetti, N.P.3
  • 2
    • 84885398764 scopus 로고    scopus 로고
    • A target- disease network model of second-generation BCR-ABL inhibitor action in Ph+ ALL
    • Rix U, Colinge J, Blatt K, Gridling M, Remsing Rix LL, et al. (2013) A Target- Disease Network Model of Second-Generation BCR-ABL Inhibitor Action in Ph+ ALL. PLoS One 8: e77155.
    • (2013) Plos One , vol.8 , pp. e77155
    • Rix, U.1    Colinge, J.2    Blatt, K.3    Gridling, M.4    Remsing Rix, L.L.5
  • 3
    • 84885979840 scopus 로고    scopus 로고
    • Novel modeling of cancer cell signaling pathways enables systematic drug repositioning for distinct breast cancer metastases
    • Zhao H, Jin G, Cui K, Ren D, Liu T, et al. (2013) Novel modeling of cancer cell signaling pathways enables systematic drug repositioning for distinct breast cancer metastases. Cancer Res 73: 6149-6163.
    • (2013) Cancer Res , vol.73 , pp. 6149-6163
    • Zhao, H.1    Jin, G.2    Cui, K.3    Ren, D.4    Liu, T.5
  • 4
    • 84883631172 scopus 로고    scopus 로고
    • Identification of potential synthetic lethal genes to p53 using a computational biology approach
    • Wang XS, Simon R (2013) Identification of potential synthetic lethal genes to p53 using a computational biology approach. Bmc Medical Genomics 6.
    • (2013) Bmc Medical Genomics , pp. 6
    • Wang, X.S.1    Simon, R.2
  • 5
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303: 799-805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 6
    • 0036699526 scopus 로고    scopus 로고
    • Revealing modular organization in the yeast transcriptional network
    • Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, et al. (2002) Revealing modular organization in the yeast transcriptional network. Nature Genetics 31: 370-377.
    • (2002) Nature Genetics , vol.31 , pp. 370-377
    • Ihmels, J.1    Friedlander, G.2    Bergmann, S.3    Sarig, O.4    Ziv, Y.5
  • 7
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional network of yeast genes. Science 306: 1555-1558.
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1    Date, S.V.2    Adai, A.T.3    Marcotte, E.M.4
  • 8
    • 17644427718 scopus 로고    scopus 로고
    • Causal proteinsignaling networks derived from multiparameter single-cell data
    • Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP (2005) Causal proteinsignaling networks derived from multiparameter single-cell data. Science 308: 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'Er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 9
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E, Shapira M, Regev A, Pe'er D, Botstein D, et al. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34: 166-176.
    • (2003) Nat Genet , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'Er, D.4    Botstein, D.5
  • 10
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302: 249-255.
    • (2003) Science , vol.302 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3    Kim, S.K.4
  • 11
    • 27544453375 scopus 로고    scopus 로고
    • A network of genetic events sufficient to convert normal human cells to a tumorigenic state
    • Kendall SD, Linardic CM, Adam SJ, Counter CM (2005) A network of genetic events sufficient to convert normal human cells to a tumorigenic state. Cancer Research 65: 9824-9828.
    • (2005) Cancer Research , vol.65 , pp. 9824-9828
    • Kendall, S.D.1    Linardic, C.M.2    Adam, S.J.3    Counter, C.M.4
  • 12
    • 39149143293 scopus 로고    scopus 로고
    • A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas
    • Mani KM, Lefebvre C, Wang K, Lim WK, Basso K, et al. (2008) A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Molecular Systems Biology 4.
    • (2008) Molecular Systems Biology , pp. 4
    • Mani, K.M.1    Lefebvre, C.2    Wang, K.3    Lim, W.K.4    Basso, K.5
  • 13
    • 84875152217 scopus 로고    scopus 로고
    • A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients
    • Tang H, Xiao G, Behrens C, Schiller J, Allen J, et al. (2013) A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin Cancer Res 19: 1577-1586.
    • (2013) Clin Cancer Res , vol.19 , pp. 1577-1586
    • Tang, H.1    Xiao, G.2    Behrens, C.3    Schiller, J.4    Allen, J.5
  • 14
    • 76749148657 scopus 로고    scopus 로고
    • An integrative -omics approach to identify functional sub-networks in human colorectal cancer
    • Nibbe RK, Koyuturk M, Chance MR (2010) An Integrative -omics Approach to Identify Functional Sub-Networks in Human Colorectal Cancer. Plos Computational Biology 6.
    • (2010) Plos Computational Biology , pp. 6
    • Nibbe, R.K.1    Koyuturk, M.2    Chance, M.R.3
  • 16
  • 17
    • 84911446967 scopus 로고    scopus 로고
    • Learning bayesian networks for gene expression data
    • Dey D, Ghosh S, Mallick B Chapman & Hall/crc Biostatistics Series
    • Liang F (2009) Learning Bayesian Networks for Gene Expression Data. In: Dey D, Ghosh S, Mallick B, editors. Bayesian Modeling in Bioinformatics: Chapman & Hall/CRC Biostatistics Series.
    • (2009) Bayesian Modeling in Bioinformatics
    • Liang, F.1
  • 18
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: An R package for weighted correlation network analysis
    • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559-559.
    • (2008) BMC Bioinformatics , vol.9 , pp. 559-559
    • Langfelder, P.1    Horvath, S.2
  • 19
    • 66549116888 scopus 로고    scopus 로고
    • Partial correlation estimation by joint sparse regression models
    • Peng J, Wang P, Zhou N, Zhu J (2009) Partial Correlation Estimation by Joint Sparse Regression Models. J Am Stat Assoc 104: 735-746.
    • (2009) J Am Stat Assoc , vol.104 , pp. 735-746
    • Peng, J.1    Wang, P.2    Zhou, N.3    Zhu, J.4
  • 20
    • 15944364151 scopus 로고    scopus 로고
    • An empirical bayes approach to inferring largescale gene association networks
    • Schä fer J, Strimmer K (2005) An empirical Bayes approach to inferring largescale gene association networks. Bioinformatics 21: 754-764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schä Fer, J.1    Strimmer, K.2
  • 21
    • 84855846735 scopus 로고    scopus 로고
    • Comparing statistical methods for constructing large scale gene networks
    • Allen JD, Xie Y, Chen M, Girard L, Xiao G (2012) Comparing statistical methods for constructing large scale gene networks. PLoS One 7: e29348.
    • (2012) PLoS One , vol.7 , pp. e29348
    • Allen, J.D.1    Xie, Y.2    Chen, M.3    Girard, L.4    Xiao, G.5
  • 23
    • 84872392871 scopus 로고    scopus 로고
    • Incorporating network structure in integrative analysis of cancer prognosis data
    • Liu J, Huang J, Ma S (2013) Incorporating network structure in integrative analysis of cancer prognosis data. Genet Epidemiol 37: 173-183.
    • (2013) Genet Epidemiol , vol.37 , pp. 173-183
    • Liu, J.1    Huang, J.2    Ma, S.3
  • 24
    • 80052691824 scopus 로고    scopus 로고
    • Integrative analysis and variable selection with multiple high-dimensional data sets
    • Ma S, Huang J, Song X (2011) Integrative analysis and variable selection with multiple high-dimensional data sets. Biostatistics 12: 763-775.
    • (2011) Biostatistics , vol.12 , pp. 763-775
    • Ma, S.1    Huang, J.2    Song, X.3
  • 25
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    • Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573: 83-92.
    • (2004) FEBS Lett , vol.573 , pp. 83-92
    • Breitling, R.1    Armengaud, P.2    Amtmann, A.3    Herzyk, P.4
  • 26
    • 28044472962 scopus 로고    scopus 로고
    • Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data
    • Breitling R, Herzyk P (2005) Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data. J Bioinform Comput Biol 3: 1171-1189.
    • (2005) J Bioinform Comput Biol , vol.3 , pp. 1171-1189
    • Breitling, R.1    Herzyk, P.2
  • 27
    • 68349112682 scopus 로고    scopus 로고
    • Statistical methods for analysis of high-throughput RNA interference screens
    • Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, et al. (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6: 569-575.
    • (2009) Nat Methods , vol.6 , pp. 569-575
    • Birmingham, A.1    Selfors, L.M.2    Forster, T.3    Wrobel, D.4    Kennedy, C.J.5
  • 29
    • 77049126382 scopus 로고    scopus 로고
    • Comments on the rank product method for analyzing replicated experiments
    • Koziol JA (2010) Comments on the rank product method for analyzing replicated experiments. FEBS Lett 584: 941-944.
    • (2010) FEBS Lett , vol.584 , pp. 941-944
    • Koziol, J.A.1
  • 30
    • 38549134505 scopus 로고    scopus 로고
    • Many Microbe Microarrays Database: Uniformly normalized Affymetrix compendia with structured experimental metadata
    • Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, et al. (2008) Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Res 36: 866-870.
    • (2008) Nucleic Acids Res , vol.36 , pp. 866-870
    • Faith, J.J.1    Driscoll, M.E.2    Fusaro, V.A.3    Cosgrove, E.J.4    Hayete, B.5
  • 31
    • 25844495901 scopus 로고    scopus 로고
    • Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states
    • Fong SS, Joyce AR, Palsson BØ (2005) Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res 15: 1365-1372.
    • (2005) Genome Res , vol.15 , pp. 1365-1372
    • Fong, S.S.1    Joyce, A.R.2    Palsson B.Ø.3
  • 32
    • 33745022557 scopus 로고    scopus 로고
    • A classification based framework for quantitative description of large-scale microarray data
    • Sangurdekar DP, Srienc F, Khodursky AB (2006) A classification based framework for quantitative description of large-scale microarray data. Genome Biol 7.
    • (2006) Genome Biol , pp. 7
    • Sangurdekar, D.P.1    Srienc, F.2    Khodursky, A.B.3
  • 33
    • 79954508289 scopus 로고    scopus 로고
    • Modeling three-dimensional chromosome structures using gene expression data
    • Xiao G, Wang X, Khodursky AB (2011) Modeling Three-Dimensional Chromosome Structures Using Gene Expression Data. J Am Stat Assoc 106: 61-72.
    • (2011) J Am Stat Assoc , vol.106 , pp. 61-72
    • Xiao, G.1    Wang, X.2    Khodursky, A.B.3
  • 34
    • 84871998076 scopus 로고    scopus 로고
    • An epithelialmesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance
    • Byers LA, Diao L, Wang J, Saintigny P, Girard L, et al. (2013) An epithelialmesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res 19: 279-290.
    • (2013) Clin Cancer Res , vol.19 , pp. 279-290
    • Byers, L.A.1    Diao, L.2    Wang, J.3    Saintigny, P.4    Girard, L.5
  • 35
    • 33747166118 scopus 로고    scopus 로고
    • Information loss from censoring in rank-based procedures
    • Lim J, Lee S, Choi H (2006) Information loss from censoring in rank-based procedures. Statistics & Probability Letters 76: 1705-1713.
    • (2006) Statistics & Probability Letters , vol.76 , pp. 1705-1713
    • Lim, J.1    Lee, S.2    Choi, H.3
  • 38
    • 84887638837 scopus 로고    scopus 로고
    • Knitr: A comprehensive tool for reproducible research in R
    • Stodden V, Leisch F, Peng D, editors Chapman and Hall/CRC
    • Xie Y (2013) knitr: A Comprehensive Tool for Reproducible Research in R. In: Stodden V, Leisch F, Peng D, editors. Implementing Reproducible Computational Research: Chapman and Hall/CRC.
    • (2013) Implementing Reproducible Computational Research
    • Xie, Y.1
  • 42
    • 0036051492 scopus 로고    scopus 로고
    • How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach
    • Pan W, Lin J, Le CT (2002) How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol 3.
    • (2002) Genome Biol , pp. 3
    • Pan, W.1    Lin, J.2    Le, C.T.3
  • 43
    • 78651299341 scopus 로고    scopus 로고
    • RegulonDB version 7.0: Transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units)
    • Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muñiz-Rascado L, et al. (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res 39: 98-9105.
    • (2011) Nucleic Acids Res , vol.39 , pp. 98-9105
    • Gama-Castro, S.1    Salgado, H.2    Peralta-Gil, M.3    Santos-Zavaleta, A.4    Muñiz-Rascado, L.5
  • 45
    • 73049110243 scopus 로고    scopus 로고
    • The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs
    • Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, et al. (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11: 1487-1495.
    • (2009) Nat Cell Biol , vol.11 , pp. 1487-1495
    • Wellner, U.1    Schubert, J.2    Burk, U.C.3    Schmalhofer, O.4    Zhu, F.5
  • 46
    • 68549106083 scopus 로고    scopus 로고
    • E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer
    • Schmalhofer O, Brabletz S, Brabletz T (2009) E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28: 151-166.
    • (2009) Cancer Metastasis Rev , vol.28 , pp. 151-166
    • Schmalhofer, O.1    Brabletz, S.2    Brabletz, T.3
  • 47
    • 84861988756 scopus 로고    scopus 로고
    • Regulation of tight junctions in human normal pancreatic duct epithelial cells and cancer cells
    • Kojima T, Sawada N (2012) Regulation of tight junctions in human normal pancreatic duct epithelial cells and cancer cells. Ann N Y Acad Sci 1257: 85-92.
    • (2012) Ann N Y Acad Sci , vol.1257 , pp. 85-92
    • Kojima, T.1    Sawada, N.2
  • 48
    • 84885362942 scopus 로고    scopus 로고
    • Increased expression of EphA1 protein in prostate cancers correlates with high Gleason score
    • Peng L, Wang H, Dong Y, Ma J, Wen J, et al. (2013) Increased expression of EphA1 protein in prostate cancers correlates with high Gleason score. Int J Clin Exp Pathol 6: 1854-1860.
    • (2013) Int J Clin Exp Pathol , vol.6 , pp. 1854-1860
    • Peng, L.1    Wang, H.2    Dong, Y.3    Ma, J.4    Wen, J.5
  • 51
    • 84888228308 scopus 로고    scopus 로고
    • Harnessing diversity towards the reconstructing of large scale gene regulatory networks
    • Hase T, Ghosh S, Yamanaka R, Kitano H (2013) Harnessing diversity towards the reconstructing of large scale gene regulatory networks. PLoS Comput Biol 9: e1003361.
    • (2013) PLoS Comput Biol , vol.9 , pp. e1003361
    • Hase, T.1    Ghosh, S.2    Yamanaka, R.3    Kitano, H.4
  • 52
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of Instability and Stabilization in Model Selection
    • Breiman L (1996) Heuristics of Instability and Stabilization in Model Selection. The Annals of Statistics 24: 2350-2383.
    • (1996) The Annals Of Statistics , vol.24 , pp. 2350-2383
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.