메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1677-1684

Learning Euclidean-to-Riemannian metric for point-to-set classification

Author keywords

Euclidean to Riemannian metric learning; point to set classification

Indexed keywords

HILBERT SPACES; MATHEMATICAL TRANSFORMATIONS; PATTERN RECOGNITION; VECTOR SPACES;

EID: 84911393747     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.217     Document Type: Conference Paper
Times cited : (90)

References (28)
  • 1
    • 34548412123 scopus 로고    scopus 로고
    • Geometric means in a novel vector space structure on symmetric positive-definite matrices
    • V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Analysis and Applications, 29(1):328-347, 2007.
    • (2007) SIAM J. Matrix Analysis and Applications , vol.29 , Issue.1 , pp. 328-347
    • Arsigny, V.1    Fillard, P.2    Pennec, X.3    Ayache, N.4
  • 2
    • 77955989956 scopus 로고    scopus 로고
    • Data fusion through cross-modality metric learning using similarity-sensitive hashing
    • M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Para-gios. Data fusion through cross-modality metric learning using similarity-sensitive hashing. In CVPR, 2010.
    • (2010) CVPR
    • Bronstein, M.M.1    Bronstein, A.M.2    Michel, F.3    Para-Gios, N.4
  • 3
    • 56449118263 scopus 로고    scopus 로고
    • Nearest hyperdisk methods for high-dimensional classification
    • H. Cevikalp, B. Triggs, and R. Polikar. Nearest hyperdisk methods for high-dimensional classification. In ICML, 2008.
    • (2008) ICML
    • Cevikalp, H.1    Triggs, B.2    Polikar, R.3
  • 4
    • 0036941556 scopus 로고    scopus 로고
    • Discriminant waveletfaces and nearest feature classifiers for face recognition
    • J. Chien and C. Wu. Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE T-PAMI, 24(12):1644-1649, 2002.
    • (2002) IEEE T-PAMI , vol.24 , Issue.12 , pp. 1644-1649
    • Chien, J.1    Wu, C.2
  • 7
    • 85045307939 scopus 로고    scopus 로고
    • Extended grassmann kernels for subspace-based learning
    • J. Hamm and D. D. Lee. Extended grassmann kernels for subspace-based learning. In NIPS, 2008.
    • (2008) NIPS
    • Hamm, J.1    Lee, D.D.2
  • 8
    • 56449127949 scopus 로고    scopus 로고
    • Grassmann discriminant analysis: A unifying view on subspace-based learning
    • J. Hamm and D. D. Lee. Grassmann discriminant analysis: a unifying view on subspace-based learning. In ICML, 2008.
    • (2008) ICML
    • Hamm, J.1    Lee, D.D.2
  • 9
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • D. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12):2639-2664, 2004.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 10
    • 84898835633 scopus 로고    scopus 로고
    • Benchmarking still-to-video face recognition via partial and local linear discriminant analysis on COX-S2V dataset
    • Z. Huang, S. Shan, H. Zhang, H. Lao, A. Kuerban, and X. Chen. Benchmarking still-to-video face recognition via partial and local linear discriminant analysis on COX-S2V dataset. In ACCV, 2012.
    • (2012) ACCV
    • Huang, Z.1    Shan, S.2    Zhang, H.3    Lao, H.4    Kuerban, A.5    Chen, X.6
  • 11
    • 84887400913 scopus 로고    scopus 로고
    • Kernel methods on the riemannian manifold of symmetric positive definite matrices
    • S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Ha-randi. Kernel methods on the riemannian manifold of symmetric positive definite matrices. In CVPR, 2013.
    • (2013) CVPR
    • Jayasumana, S.1    Hartley, R.2    Salzmann, M.3    Li, H.4    Ha-Randi, M.5
  • 12
    • 51949088884 scopus 로고    scopus 로고
    • Face tracking and recognition with visual constraints in real-world videos
    • M. Kim, S. Kumar, V. Pavlovic, and H. Rowley. Face tracking and recognition with visual constraints in real-world videos. In CVPR, 2008.
    • (2008) CVPR
    • Kim, M.1    Kumar, S.2    Pavlovic, V.3    Rowley, H.4
  • 13
    • 0042441074 scopus 로고    scopus 로고
    • Analyzing appearance and contour based methods for object categorization
    • B. Leibe and B. Schiele. Analyzing appearance and contour based methods for object categorization. In CVPR, 2003.
    • (2003) CVPR
    • Leibe, B.1    Schiele, B.2
  • 15
    • 79952712776 scopus 로고    scopus 로고
    • Learning multi-modal similarity
    • B. McFee and G. Lanckriet. Learning multi-modal similarity. JMLR, 12:491-523, 2011.
    • (2011) JMLR , vol.12 , pp. 491-523
    • McFee, B.1    Lanckriet, G.2
  • 16
    • 29344452228 scopus 로고    scopus 로고
    • A riemannian framework for tensor computing
    • X. Pennec, P. Fillard, and N. Ayache. A riemannian framework for tensor computing. IJCV, 66(1):41-66, 2006.
    • (2006) IJCV , vol.66 , Issue.1 , pp. 41-66
    • Pennec, X.1    Fillard, P.2    Ayache, N.3
  • 17
    • 80053439603 scopus 로고    scopus 로고
    • Learning multi-view neighborhood preserving projections
    • N. Quadrianto and C. H. Lampert. Learning multi-view neighborhood preserving projections. In ICML, 2011.
    • (2011) ICML
    • Quadrianto, N.1    Lampert, C.H.2
  • 18
    • 80052882527 scopus 로고    scopus 로고
    • Bypassing synthesis: PLS for face recognition with pose, low-resolution and sketch
    • A. Sharma and D. Jacobs. Bypassing synthesis: PLS for face recognition with pose, low-resolution and sketch. In CVPR, 2011.
    • (2011) CVPR
    • Sharma, A.1    Jacobs, D.2
  • 19
    • 84866648988 scopus 로고    scopus 로고
    • Generalized multiview analysis: A discriminative latent space
    • A. Sharma, A. Kumar, H. Daume, and D. Jacobs. Generalized multiview analysis: A discriminative latent space. In CVPR, 2012.
    • (2012) CVPR
    • Sharma, A.1    Kumar, A.2    Daume, H.3    Jacobs, D.4
  • 20
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • M. Sugiyama. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. JMLR, 8:1027-1061, 2007.
    • (2007) JMLR , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 21
    • 84887364804 scopus 로고    scopus 로고
    • Kernel learning for extrinsic classification of manifold features
    • R. Vemulapalli, J. K. Pillai, and R. Chellappa. Kernel learning for extrinsic classification of manifold features. In CVPR, 2013.
    • (2013) CVPR
    • Vemulapalli, R.1    Pillai, J.K.2    Chellappa, R.3
  • 22
    • 11144330519 scopus 로고    scopus 로고
    • K-local hyperplane and convex distance nearest neighbor algorithms
    • P. Vincent and Y. Bengio. K-local hyperplane and convex distance nearest neighbor algorithms. In NIPS, 2001.
    • (2001) NIPS
    • Vincent, P.1    Bengio, Y.2
  • 23
    • 84866657142 scopus 로고    scopus 로고
    • Covariance discriminative learning: A natural and efficient approach to image set classification
    • R. Wang, H. Guo, L. S. Davis, and Q. Dai. Covariance discriminative learning: A natural and efficient approach to image set classification. In CVPR, 2012.
    • (2012) CVPR
    • Wang, R.1    Guo, H.2    Davis, L.S.3    Dai, Q.4
  • 24
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. JMLR, 10:207-244, 2009.
    • (2009) JMLR , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 25
    • 84896062057 scopus 로고    scopus 로고
    • Multi-modal distance metric learning
    • P. Xie and E. P. Xing. Multi-modal distance metric learning. In IJCAI, 2013.
    • (2013) IJCAI
    • Xie, P.1    Xing, E.P.2
  • 26
    • 33745863047 scopus 로고    scopus 로고
    • Face recognition using temporal image sequence
    • O. Yamaguchi, K. Fukui, and K. Maeda. Face recognition using temporal image sequence. In FG, 1998.
    • (1998) FG
    • Yamaguchi, O.1    Fukui, K.2    Maeda, K.3
  • 27
    • 84893369645 scopus 로고    scopus 로고
    • Heterogeneous metric learning with joint graph regularization for cross-media retrieval
    • X. Zhai, Y. Peng, and J. Xiao. Heterogeneous metric learning with joint graph regularization for cross-media retrieval. In AAAI, 2013.
    • (2013) AAAI
    • Zhai, X.1    Peng, Y.2    Xiao, J.3
  • 28
    • 84898809465 scopus 로고    scopus 로고
    • From point to set: Extend the learning of distance metrics
    • P. Zhu, L. Zhang, W. Zuo, and D. Zhang. From point to set: extend the learning of distance metrics. In ICCV, 2013.
    • (2013) ICCV
    • Zhu, P.1    Zhang, L.2    Zuo, W.3    Zhang, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.