메뉴 건너뛰기




Volumn , Issue , 2014, Pages 224-231

Histograms of pattern sets for image classification and object recognition

Author keywords

computer vision; data mining; image classification; object detection; visual recognition

Indexed keywords

COMPUTER VISION; DATA MINING; GRAPHIC METHODS; IMAGE CODING; KNOWLEDGE REPRESENTATION; OBJECT DETECTION; OBJECT RECOGNITION; TEXTURES;

EID: 84911387152     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.36     Document Type: Conference Paper
Times cited : (20)

References (35)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • ACM
    • R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in large databases. In ACM SIGMOD Record, volume 22, pages 207-216. ACM, 1993.
    • (1993) ACM SIGMOD Record , vol.22 , pp. 207-216
    • Agrawal, R.1    Imieliński, T.2    Swami, A.3
  • 2
    • 84866719999 scopus 로고    scopus 로고
    • Color attributes for object detection
    • A. D. Bagdanov. Color attributes for object detection. In CVPR, 2012.
    • (2012) CVPR
    • Bagdanov, A.D.1
  • 3
    • 49749149150 scopus 로고    scopus 로고
    • The chosen few: On identifying valuable patterns
    • B. Bringmann and A. Zimmermann. The chosen few: On identifying valuable patterns. In ICDM, 2007.
    • (2007) ICDM
    • Bringmann, B.1    Zimmermann, A.2
  • 6
    • 77953180995 scopus 로고    scopus 로고
    • Discriminative models for multi-class object layout
    • C. Desai, D. Ramanan, C. Fowlkes, and U. C. Irvine. Discriminative models for multi-class object layout. In ICCV, 2009.
    • (2009) ICCV
    • Desai, C.1    Ramanan, D.2    Fowlkes, C.3    Irvine, U.C.4
  • 7
    • 0002034653 scopus 로고    scopus 로고
    • Efficient mining of emerging patterns: Discovering trends and differences
    • G. Dong and J. Li. Efficient mining of emerging patterns: discovering trends and differences. In KDD, 1999.
    • (1999) KDD
    • Dong, G.1    Li, J.2
  • 8
    • 77955998866 scopus 로고    scopus 로고
    • Multi-cue pedestrian classification with partial occlusion handling
    • M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila. Multi-cue pedestrian classification with partial occlusion handling. In CVPR, 2010.
    • (2010) CVPR
    • Enzweiler, M.1    Eigenstetter, A.2    Schiele, B.3    Gavrila, D.M.4
  • 10
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-manan. Object detection with discriminatively trained part-based models. IEEE PAMI, 32(9):1627-1645, 2010.
    • (2010) IEEE PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ra-Manan, D.4
  • 11
    • 84877310309 scopus 로고    scopus 로고
    • Effective use of frequent itemset mining for image classification
    • B. Fernando, É. Fromont, and T. Tuytelaars. Effective use of frequent itemset mining for image classification. In ECCV, 2012.
    • (2012) ECCV
    • Fernando, B.1    Fromont, E.2    Tuytelaars, T.3
  • 12
    • 70350315962 scopus 로고    scopus 로고
    • Scale invariant action recognition using compound features mined from dense spatio-temporal corners
    • A. Gilbert, J. Illingworth, and R. Bowden. Scale invariant action recognition using compound features mined from dense spatio-temporal corners. In ECCV, 2008.
    • (2008) ECCV
    • Gilbert, A.1    Illingworth, J.2    Bowden, R.3
  • 14
    • 84898427819 scopus 로고    scopus 로고
    • Feature sets and dimensionality reduction for visual object detection
    • S. U. Hussain and B. Triggs. Feature sets and dimensionality reduction for visual object detection. In BMVC, 2010.
    • (2010) BMVC
    • Hussain, S.U.1    Triggs, B.2
  • 16
    • 77952504625 scopus 로고    scopus 로고
    • Top-down color attention for object recognition
    • F. S. Khan, J. van de Weijer, and M. Vanrell. Top-down color attention for object recognition. In ICCV, 2009.
    • (2009) ICCV
    • Khan, F.S.1    Weijer De J.Van2    Vanrell, M.3
  • 17
    • 34548553139 scopus 로고    scopus 로고
    • Average number of frequent (closed) patterns in bernouilli and markovian databases
    • L. Lhote, F. Rioult, and A. Soulet. Average number of frequent (closed) patterns in bernouilli and markovian databases. In ICDM, 2005.
    • (2005) ICDM
    • Lhote, L.1    Rioult, F.2    Soulet, A.3
  • 18
    • 36849044170 scopus 로고    scopus 로고
    • Mining statistically important equivalence classes and delta-discriminative emerging patterns
    • J. Li, G. Liu, and L. Wong. Mining statistically important equivalence classes and delta-discriminative emerging patterns. In KDD, pages 430-439, 2007.
    • (2007) KDD , pp. 430-439
    • Li, J.1    Liu, G.2    Wong, L.3
  • 19
    • 84898430631 scopus 로고    scopus 로고
    • Recognizing materials from virtual examples
    • W. Li and M. Fritz. Recognizing materials from virtual examples. In ECCV, 2012.
    • (2012) ECCV
    • Li, W.1    Fritz, M.2
  • 20
    • 65249121810 scopus 로고    scopus 로고
    • Automated flower classification over a large number of classes
    • M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In ICVGIP, 2008.
    • (2008) ICVGIP
    • Nilsback, M.-E.1    Zisserman, A.2
  • 21
    • 61749084093 scopus 로고    scopus 로고
    • Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining
    • P. K. Novak, N. Lavrac, and G. I. Webb. Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research, 10:377-403, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 377-403
    • Novak, P.K.1    Lavrac, N.2    Webb, G.I.3
  • 23
    • 50649122703 scopus 로고    scopus 로고
    • Efficient mining of frequent and distinctive feature configurations
    • T. Quack, V. Ferrari, B. Leibe, and L. J. V. Gool. Efficient mining of frequent and distinctive feature configurations. In ICCV, 2007.
    • (2007) ICCV
    • Quack, T.1    Ferrari, V.2    Leibe, B.3    Gool, L.J.V.4
  • 24
    • 84890551945 scopus 로고    scopus 로고
    • Local higher-order statistics (lhs) for texture categorization and facial analysis
    • G. Sharma, S. U. Hussain, and F. Jurie. Local higher-order statistics (lhs) for texture categorization and facial analysis. In ECCV, 2012.
    • (2012) ECCV
    • Sharma, G.1    Hussain, S.U.2    Jurie, F.3
  • 25
    • 5044234908 scopus 로고    scopus 로고
    • Video data mining using configurations of viewpoint invariant regions
    • J. Sivic and A. Zisserman. Video data mining using configurations of viewpoint invariant regions. In CVPR, 2004.
    • (2004) CVPR
    • Sivic, J.1    Zisserman, A.2
  • 26
    • 56749119023 scopus 로고    scopus 로고
    • Enhanced local texture feature sets for face recognition under difficult lighting conditions
    • X. Tan and B. Triggs. Enhanced local texture feature sets for face recognition under difficult lighting conditions. In Analysis and Modeling of Faces and Gestures. 2007.
    • (2007) Analysis and Modeling of Faces and Gestures.
    • Tan, X.1    Triggs, B.2
  • 27
    • 26944474565 scopus 로고    scopus 로고
    • An efficient algorithm for enumerating closed patterns in transaction databases
    • T. Uno, T. Asai, Y. Uchida, and H. Arimura. An efficient algorithm for enumerating closed patterns in transaction databases. In DS, 2004.
    • (2004) DS
    • Uno, T.1    Asai, T.2    Uchida, Y.3    Arimura, H.4
  • 29
    • 80052881652 scopus 로고    scopus 로고
    • Instantly telling what happens in a video sequence using simple features
    • L. Wang, Y. Wang, T. Jiang, and W. Gao. Instantly telling what happens in a video sequence using simple features. In CVPR, 2011.
    • (2011) CVPR
    • Wang, L.1    Wang, Y.2    Jiang, T.3    Gao, W.4
  • 30
    • 85020603202 scopus 로고    scopus 로고
    • An hog-lbp human detector with partial occlusion handling
    • X. Wang, T. X. Han, and S. Yan. An hog-lbp human detector with partial occlusion handling. In ICCV, 2009.
    • (2009) ICCV
    • Wang, X.1    Han, T.X.2    Yan, S.3
  • 31
    • 77956001933 scopus 로고    scopus 로고
    • Use bin-ratio information for category and scene classification
    • N. Xie, H. Ling, W. Hu, and X. Zhang. Use bin-ratio information for category and scene classification. In CVPR, 2010.
    • (2010) CVPR
    • Xie, N.1    Ling, H.2    Hu, W.3    Zhang, X.4
  • 32
    • 77955987964 scopus 로고    scopus 로고
    • Grouplet: A structured image representation for recognizing human and object interactions
    • B. Yao and L. Fei-Fei. Grouplet: A structured image representation for recognizing human and object interactions. In CVPR, 2010.
    • (2010) CVPR
    • Yao, B.1    Fei-Fei, L.2
  • 33
    • 80052897321 scopus 로고    scopus 로고
    • Mining discriminative cooccurrence patterns for visual recognition
    • J. Yuan, M. Yang, and Y. Wu. Mining discriminative cooccurrence patterns for visual recognition. In CVPR, 2011.
    • (2011) CVPR
    • Yuan, J.1    Yang, M.2    Wu, Y.3
  • 34
    • 80052880984 scopus 로고    scopus 로고
    • Boosted local structured hog-lbp for object localization
    • J. Zhang, K. Huang, Y. Yu, and T. Tan. Boosted local structured hog-lbp for object localization. In CVPR, 2011.
    • (2011) CVPR
    • Zhang, J.1    Huang, K.2    Yu, Y.3    Tan, T.4
  • 35
    • 77955986466 scopus 로고    scopus 로고
    • Latent hierarchical structural learning for object detection
    • L. Zhu, Y. Chen, A. L. Yuille, and W. T. Freeman. Latent hierarchical structural learning for object detection. In CVPR, 2010.
    • (2010) CVPR
    • Zhu, L.1    Chen, Y.2    Yuille, A.L.3    Freeman, W.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.