메뉴 건너뛰기




Volumn , Issue , 2014, Pages 3834-3841

Smooth representation clustering

Author keywords

motion segmentation; representation; subspace clustering

Indexed keywords

PATTERN RECOGNITION;

EID: 84911385302     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.484     Document Type: Conference Paper
Times cited : (313)

References (30)
  • 1
    • 84976855597 scopus 로고
    • Solution of the matrix equation AX + XB = C
    • Sept.
    • R. Bartels and G. Stewart. Solution of the matrix equation AX + XB = C. Communications of the ACM, 15(9):820-826, Sept. 1972.
    • (1972) Communications of the ACM , vol.15 , Issue.9 , pp. 820-826
    • Bartels, R.1    Stewart, G.2
  • 2
    • 0032154138 scopus 로고    scopus 로고
    • A multibody factorization method for independently moving objects
    • J. Costeira and T. Kanade. A multibody factorization method for independently moving objects. IJCV, 29(3):108-121, 1998.
    • (1998) IJCV , vol.29 , Issue.3 , pp. 108-121
    • Costeira, J.1    Kanade, T.2
  • 3
    • 70450184118 scopus 로고    scopus 로고
    • Sparse subspace clustering
    • E. Elhamifar and R. Vidal. Sparse subspace clustering. In CVPR, pages 2790-2797, 2009.
    • (2009) CVPR , pp. 2790-2797
    • Elhamifar, E.1    Vidal, R.2
  • 4
    • 84911375696 scopus 로고    scopus 로고
    • Sparse subspace clustering: Algorithm, theory, and applications
    • E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory, and applications. IEEE TPAMI, 2013.
    • (2013) IEEE TPAMI
    • Elhamifar, E.1    Vidal, R.2
  • 5
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395, 1981.
    • (1981) Commun. ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2
  • 6
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE TPAMI, 23(6):643-660, 2001.
    • (2001) IEEE TPAMI , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 7
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE TPAMI, 23(6):643-660, 2001.
    • (2001) IEEE TPAMI , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.S.1    Belhumeur, P.N.2    Kriegman, D.J.3
  • 8
    • 85162319557 scopus 로고    scopus 로고
    • Trace lasso: A trace norm regularization for correlated designs
    • E. Grave, G. Obozinski, and F. Bach. Trace lasso: a trace norm regularization for correlated designs. In NIPS, pages 2187-2195, 2011.
    • (2011) NIPS , pp. 2187-2195
    • Grave, E.1    Obozinski, G.2    Bach, F.3
  • 9
    • 8644228268 scopus 로고    scopus 로고
    • Locality preserving projections
    • X. He and P. Niyogi. Locality preserving projections. In NIPS, 2003.
    • (2003) NIPS
    • He, X.1    Niyogi, P.2
  • 10
    • 84911452493 scopus 로고    scopus 로고
    • Exploiting unsupervised and supervised constraints for subspace clustering
    • H. Hu, J. Feng, and J. Zhou. Exploiting unsupervised and supervised constraints for subspace clustering. CoRR, 2014.
    • (2014) CoRR
    • Hu, H.1    Feng, J.2    Zhou, J.3
  • 11
    • 0028428774 scopus 로고
    • A database for handwritten text recognition research
    • J. J. Hull. A database for handwritten text recognition research. IEEE TPAMI, 16(5):550-554, 1994.
    • (1994) IEEE TPAMI , vol.16 , Issue.5 , pp. 550-554
    • Hull, J.J.1
  • 13
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • H. Kuhn. The Hungarian method for the assignment problem. Naval research logistics quarterly, 2(1-2):83-97, 1955.
    • (1955) Naval Research Logistics Quarterly , vol.2 , Issue.1-2 , pp. 83-97
    • Kuhn, H.1
  • 14
    • 0000321992 scopus 로고
    • Explicit solutions of linear matrix equations
    • P. Lancaster. Explicit solutions of linear matrix equations. SIAM Review, 12(4):pp. 544-566, 1970.
    • (1970) SIAM Review , vol.12 , Issue.4 , pp. 544-566
    • Lancaster, P.1
  • 15
    • 84870197517 scopus 로고    scopus 로고
    • Robust recovery of subspace structures by low-rank representation
    • G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures by low-rank representation. IEEE TPAMI, 35(1):171-184, 2013.
    • (2013) IEEE TPAMI , vol.35 , Issue.1 , pp. 171-184
    • Liu, G.1    Lin, Z.2    Yan, S.3    Sun, J.4    Yu, Y.5    Ma, Y.6
  • 16
    • 77956529193 scopus 로고    scopus 로고
    • Robust subspace segmentation by low-rank representation
    • G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In ICML, pages 663-670, 2010.
    • (2010) ICML , pp. 663-670
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 17
    • 84898805200 scopus 로고    scopus 로고
    • Correlation adaptive subspace segmentation by trace lasso
    • C. Lu, Z. Lin, and S. Yan. Correlation adaptive subspace segmentation by trace lasso. In ICCV, 2013.
    • (2013) ICCV
    • Lu, C.1    Lin, Z.2    Yan, S.3
  • 18
    • 84867854316 scopus 로고    scopus 로고
    • Robust and effficient subspace segmentation via least squares regression
    • C. Y. Lu, H. Min, Z.-Q. Zhao, L. Zhu, D.-S. Huang, and S. Yan. Robust and effficient subspace segmentation via least squares regression. In ECCV, pages 347-360, 2012.
    • (2012) ECCV , pp. 347-360
    • Lu, C.Y.1    Min, H.2    Zhao, Z.-Q.3    Zhu, L.4    Huang, D.-S.5    Yan, S.6
  • 19
    • 80052411944 scopus 로고    scopus 로고
    • Multi-subspace representation and discovery
    • D. Luo, F. Nie, C. H. Q. Ding, and H. Huang. Multi-subspace representation and discovery. In ECML/PKDD, pages 405-420, 2011.
    • (2011) ECML/PKDD , pp. 405-420
    • Luo, D.1    Nie, F.2    Ding, C.H.Q.3    Huang, H.4
  • 20
    • 34548133659 scopus 로고    scopus 로고
    • Segmentation of multivariate mixed data via lossy data coding and compression
    • Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation of multivariate mixed data via lossy data coding and compression. IEEE TPAMI, 29(9):1546-1562, 2007.
    • (2007) IEEE TPAMI , vol.29 , Issue.9 , pp. 1546-1562
    • Ma, Y.1    Derksen, H.2    Hong, W.3    Wright, J.4
  • 21
    • 33745821896 scopus 로고    scopus 로고
    • Spectral clustering for robust motion segmentation
    • J. H. Park, H. Zha, and R. Kasturi. Spectral clustering for robust motion segmentation. In ECCV (4), pages 390-401, 2004.
    • (2004) ECCV , Issue.4 , pp. 390-401
    • Park, J.H.1    Zha, H.2    Kasturi, R.3
  • 22
    • 77956034602 scopus 로고    scopus 로고
    • Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories
    • S. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE TPAMI, 32(10):1832-1845, 2010.
    • (2010) IEEE TPAMI , vol.32 , Issue.10 , pp. 1832-1845
    • Rao, S.1    Tron, R.2    Vidal, R.3    Ma, Y.4
  • 23
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE TPAMI, 22(8):888-905, 2000.
    • (2000) IEEE TPAMI , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 24
    • 0026943737 scopus 로고
    • Shape and motion from image streams under orthography: A factorization method
    • C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: a factorization method. IJCV, 9(2):137-154, 1992.
    • (1992) IJCV , vol.9 , Issue.2 , pp. 137-154
    • Tomasi, C.1    Kanade, T.2
  • 25
    • 34948881815 scopus 로고    scopus 로고
    • A benchmark for the comparison of 3-d motion segmentation algorithm
    • R. Tron and R. Vidal. A benchmark for the comparison of 3-d motion segmentation algorithm. In Proc. CVPR, 2007.
    • (2007) Proc. CVPR
    • Tron, R.1    Vidal, R.2
  • 27
    • 30144438432 scopus 로고    scopus 로고
    • Generalized principal component analysis (GPCA)
    • R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis (GPCA). IEEE TPAMI, 27(12):1945-1959, 2005.
    • (2005) IEEE TPAMI , vol.27 , Issue.12 , pp. 1945-1959
    • Vidal, R.1    Ma, Y.2    Sastry, S.3
  • 28
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416, 2007.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 29
    • 80055057840 scopus 로고    scopus 로고
    • Efficient subspace segmentation via quadratic programming
    • S. Wang, X. Yuan, T. Yao, S. Yan, and J. Shen. Efficient subspace segmentation via quadratic programming. In AAAI, pages 519-524, 2011.
    • (2011) AAAI , pp. 519-524
    • Wang, S.1    Yuan, X.2    Yao, T.3    Yan, S.4    Shen, J.5
  • 30
    • 34948837349 scopus 로고    scopus 로고
    • A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate
    • J. Yan and M. Pollefeys. A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In Proc. ECCV, 2006.
    • (2006) Proc. ECCV
    • Yan, J.1    Pollefeys, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.