메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1345-1352

Correlation adaptive subspace segmentation by trace lasso

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; DATA REDUCTION;

EID: 84898805200     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.170     Document Type: Conference Paper
Times cited : (235)

References (24)
  • 1
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1-122, 2011.
    • (2011) Foundations and Trends in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 2
    • 77949722130 scopus 로고    scopus 로고
    • Learning with 1-graph for image analysis
    • Compendex
    • B. Cheng, J. Yang, S. Yan, Y. Fu, and T. S. Huang. Learning with 1-graph for image analysis. TIP, 19(Compendex):858-866, 2010.
    • (2010) TIP , vol.19 , pp. 858-866
    • Cheng, B.1    Yang, J.2    Yan, S.3    Fu, Y.4    Huang, T.S.5
  • 3
    • 70450184118 scopus 로고    scopus 로고
    • Sparse subspace clustering
    • E. Elhamifar and R. Vidal. Sparse subspace clustering. In CVPR, pages 2790-2797, 2009.
    • (2009) In CVPR , pp. 2790-2797
    • Elhamifar, E.1    Vidal, R.2
  • 5
    • 84874065221 scopus 로고    scopus 로고
    • Graph-oriented learning via automatic group sparsity for data analysis
    • IEEE
    • Y. Fang, R. Wang, and B. Dai. Graph-oriented learning via automatic group sparsity for data analysis. In ICDM, pages 251-259. IEEE, 2012.
    • (2012) In ICDM , pp. 251-259
    • Fang, Y.1    Wang, R.2    Dai, B.3
  • 6
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. TPAMI, 23(6):643-660, 2001.
    • (2001) TPAMI , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.S.1    Belhumeur, P.N.2    Kriegman, D.J.3
  • 7
    • 85162319557 scopus 로고    scopus 로고
    • Trace Lasso: A trace norm regularization for correlated designs
    • E. Grave, G. Obozinski, and F. Bach. Trace Lasso: a trace norm regularization for correlated designs. In NIPS, 2011.
    • (2011) In NIPS
    • Grave, E.1    Obozinski, G.2    Bach, F.3
  • 8
    • 84863418938 scopus 로고    scopus 로고
    • Discriminant sparse neighborhood preserving embedding for face recognition
    • J. Gui, Z. Sun, W. Jia, R. Hu, Y. Lei, and S. Ji. Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recognition, 45(8):2884-2893, 2012.
    • (2012) Pattern Recognition , vol.45 , Issue.8 , pp. 2884-2893
    • Gui, J.1    Sun, Z.2    Jia, W.3    Hu, R.4    Lei, Y.5    Ji, S.6
  • 9
    • 0042440805 scopus 로고    scopus 로고
    • Clustering appearances of objects under varying illumination conditions
    • J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman. Clustering appearances of objects under varying illumination conditions. In CVPR, volume 1.
    • In CVPR , vol.1
    • Ho, J.1    Yang, M.-H.2    Lim, J.3    Lee, K.-C.4    Kriegman, D.5
  • 10
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. Hoerl and R. Kennard. Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67, 1970.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.1    Kennard, R.2
  • 11
    • 65149091304 scopus 로고    scopus 로고
    • Simultaneous tensor subspace selection and clustering: The equivalence of high order SVD and k-means clustering
    • H. Huang, C. Ding, D. Luo, and T. Li. Simultaneous tensor subspace selection and clustering: the equivalence of high order SVD and k-means clustering. In KDD, pages 327-335, 2008.
    • (2008) In KDD , pp. 327-335
    • Huang, H.1    Ding, C.2    Luo, D.3    Li, T.4
  • 12
    • 84865420055 scopus 로고    scopus 로고
    • Robust recovery of subspace structures by low-rank representation
    • G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures by low-rank representation. TPAMI, 99:1, 2012.
    • (2012) TPAMI , vol.99 , pp. 1
    • Liu, G.1    Lin, Z.2    Yan, S.3    Sun, J.4    Yu, Y.5    Ma, Y.6
  • 13
    • 77956529193 scopus 로고    scopus 로고
    • Robust subspace segmentation by low-rank representation
    • G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In ICML, pages 663-670, 2010.
    • (2010) In ICML , pp. 663-670
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 14
    • 84863042818 scopus 로고    scopus 로고
    • Latent low-rank representation for subspace segmentation and feature extraction
    • G. Liu and S. Yan. Latent low-rank representation for subspace segmentation and feature extraction. In ICCV, pages 1615-1622, 2011.
    • (2011) In ICCV , pp. 1615-1622
    • Liu, G.1    Yan, S.2
  • 15
    • 84904318594 scopus 로고    scopus 로고
    • Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning
    • R. Liu, Z. Lin, and Z. Su. Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning. In ACML, 2013.
    • (2013) In ACML
    • Liu, R.1    Lin, Z.2    Su, Z.3
  • 16
    • 84898490008 scopus 로고    scopus 로고
    • Robust and efficient subspace segmentation via least squares regression
    • C.-Y. Lu, H. Min, Z.-Q. Zhao, L. Zhu, D.-S. Huang, and S. Yan. Robust and efficient subspace segmentation via least squares regression. In ECCV, 2012.
    • (2012) In ECCV
    • Lu, C.-Y.1    Min, H.2    Zhao, Z.-Q.3    Zhu, L.4    Huang, D.-S.5    Yan, S.6
  • 17
    • 80052411944 scopus 로고    scopus 로고
    • Multi-subspace representation and discovery
    • LNAI
    • D. Luo, F. Nie, C. Ding, and H. Huang. Multi-subspace representation and discovery. In ECML PKDD, volume 6912 LNAI, pages 405-420, 2011.
    • (2011) In ECML PKDD , vol.6912 , pp. 405-420
    • Luo, D.1    Nie, F.2    Ding, C.3    Huang, H.4
  • 18
    • 79951739650 scopus 로고    scopus 로고
    • Robust low-rank subspace segmentation with semidefinite guarantees
    • Y. Ni, J. Sun, X. Yuan, S. Yan, and L.-F. Cheong. Robust low-rank subspace segmentation with semidefinite guarantees. In ICDM Workshops, pages 1179-1188, 2010.
    • (2010) In ICDM Workshops , pp. 1179-1188
    • Ni, Y.1    Sun, J.2    Yuan, X.3    Yan, S.4    Cheong, L.-F.5
  • 19
    • 77956034602 scopus 로고    scopus 로고
    • Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories
    • S. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. TPAMI, 32(10):1832-1845, 2010.
    • (2010) TPAMI , vol.32 , Issue.10 , pp. 1832-1845
    • Rao, S.1    Tron, R.2    Vidal, R.3    Ma, Y.4
  • 20
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. B. Shi and J. Malik. Normalized cuts and image segmentation. TPAMI, 22(8):888-905, 2000.
    • (2000) TPAMI , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.B.1    Malik, J.2
  • 21
    • 0042878370 scopus 로고    scopus 로고
    • Partially labeled classification with Markov random walks
    • M. Szummer and T. Jaakkola. Partially labeled classification with Markov random walks. In NIPS, pages 945-952, 2001.
    • (2001) In NIPS , pp. 945-952
    • Szummer, M.1    Jaakkola, T.2
  • 23
    • 30144438432 scopus 로고    scopus 로고
    • Generalized principal component analysis (GPCA)
    • R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis (GPCA). TPAMI, 27(12):1945-1959, 2005.
    • (2005) TPAMI , vol.27 , Issue.12 , pp. 1945-1959
    • Vidal, R.1    Ma, Y.2    Sastry, S.3
  • 24
    • 80055057840 scopus 로고    scopus 로고
    • Efficient subspace segmentation via quadratic programming
    • S. Wang, X. Yuan, T. Yao, S. Yan, and J. Shen. Efficient subspace segmentation via quadratic programming. In AAAI, volume 1, pages 519-524, 2011.
    • (2011) In AAAI , vol.1 , pp. 519-524
    • Wang, S.1    Yuan, X.2    Yao, T.3    Yan, S.4    Shen, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.