메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

Existence of solutions for riemann-liouville fractional boundary value problem

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84910640648     PISSN: 10853375     EISSN: 16870409     Source Type: Journal    
DOI: 10.1155/2014/540351     Document Type: Article
Times cited : (5)

References (24)
  • 3
    • 80054946851 scopus 로고    scopus 로고
    • Astudy of nonlinear Langevin equation involving two fractional orders in different intervals
    • B. Ahmad, J. J. Nieto, A. Alsaedi, andM. El-Shahed, "Astudy of nonlinear Langevin equation involving two fractional orders in different intervals" Nonlinear Analysis: RealWorld Applications, vol. 13, no. 2, pp. 599-606, 2012
    • (2012) Nonlinear Analysis: RealWorld Applications , vol.13 , Issue.2 , pp. 599-606
    • Ahmad, B.1    Nieto, J.J.2    Alsaedi, M.3    El-Shahed, A.4
  • 4
    • 84855849752 scopus 로고    scopus 로고
    • Positive solutions of nonlinear fractional differential equations with integral boundary value conditions
    • A. Cabada and G. Wang, "Positive solutions of nonlinear fractional differential equations with integral boundary value conditions" Journal ofMathematical Analysis and Applications, vol. 389, no. 1, pp. 403-411, 2012
    • (2012) Journal OfMathematical Analysis and Applications , vol.389 , Issue.1 , pp. 403-411
    • Cabada, A.1    Wang, G.2
  • 5
    • 55649098198 scopus 로고    scopus 로고
    • Boundary value problem for a coupled system of nonlinear fractional differential equations
    • X. Su, "Boundary value problem for a coupled system of nonlinear fractional differential equations" Applied Mathematics Letters, vol. 22, no. 1, pp. 64-69, 2009
    • (2009) Applied Mathematics Letters , vol.22 , Issue.1 , pp. 64-69
    • Su, X.1
  • 6
    • 58149470828 scopus 로고    scopus 로고
    • Asingular boundary value problem for nonlinear differential equations of fractional order
    • N. Kosmatov, "Asingular boundary value problem for nonlinear differential equations of fractional order" Journal of Applied Mathematics and Computing, vol. 29, no. 1-2, pp. 125-135, 2009
    • (2009) Journal of Applied Mathematics and Computing , vol.29 , Issue.1-2 , pp. 125-135
    • Kosmatov, N.1
  • 7
    • 79960993100 scopus 로고    scopus 로고
    • Existence of solutions for a class of fractional boundary value problems via critical point theory
    • F. Jiao and Y. Zhou, "Existence of solutions for a class of fractional boundary value problems via critical point theory" Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1181-1199, 2011
    • (2011) Computers & Mathematics with Applications , vol.62 , Issue.3 , pp. 1181-1199
    • Jiao, F.1    Zhou, Y.2
  • 8
    • 84863029764 scopus 로고    scopus 로고
    • Existence andmultiplicity of solutions for some fractional boundary value problem via critical point theory
    • Article ID 648635, 21 pages 2012
    • J. Chen and X. H. Tang, "Existence andmultiplicity of solutions for some fractional boundary value problem via critical point theory" Abstract and Applied Analysis, vol. 2012, Article ID 648635, 21 pages, 2012
    • (2012) Abstract and Applied Analysis
    • Chen, J.1    Tang, X.H.2
  • 9
    • 79955561060 scopus 로고    scopus 로고
    • Monotone iterative sequences for nonlinear boundary value problems of fractional order
    • M. Al-Refai and M. A. Hajji, "Monotone iterative sequences for nonlinear boundary value problems of fractional order" Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no. 11, pp. 3531-3539, 2011
    • (2011) Nonlinear Analysis: Theory, Methods & Applications , vol.74 , Issue.11 , pp. 3531-3539
    • Al-Refai, M.1    Hajji, M.A.2
  • 10
    • 84892723684 scopus 로고    scopus 로고
    • Fractional problems with advanced arguments
    • T. Jankowski, "Fractional problems with advanced arguments" Applied Mathematics and Computation, vol. 230, pp. 371-382, 2014
    • (2014) Applied Mathematics and Computation , vol.230 , pp. 371-382
    • Jankowski, T.1
  • 11
    • 79651473557 scopus 로고    scopus 로고
    • Existence of a solution for the fractional differential equation with nonlinear boundary conditions
    • S. Zhang, "Existence of a solution for the fractional differential equation with nonlinear boundary conditions" Computers & Mathematics with Applications, vol. 61, no. 4, pp. 1202-1208, 2011
    • (2011) Computers & Mathematics with Applications , vol.61 , Issue.4 , pp. 1202-1208
    • Zhang, S.1
  • 12
    • 84856213616 scopus 로고    scopus 로고
    • Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments
    • G. Wang, "Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments" Journal of Computational and Applied Mathematics, vol. 236, no. 9, pp. 2425-2430, 2012
    • (2012) Journal of Computational and Applied Mathematics , vol.236 , Issue.9 , pp. 2425-2430
    • Wang, G.1
  • 13
    • 79651475787 scopus 로고    scopus 로고
    • Unbounded solutions to a boundary value problem of fractional order on the half-line
    • X. Su and S. Zhang, "Unbounded solutions to a boundary value problem of fractional order on the half-line" Computers & MathematicswithApplications, vol. 61, no. 4, pp. 1079-1087, 2011
    • (2011) Computers & MathematicswithApplications , vol.61 , Issue.4 , pp. 1079-1087
    • Su, X.1    Zhang, S.2
  • 14
    • 77954144417 scopus 로고    scopus 로고
    • Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations
    • R. P. Agarwal, D. O'Regan, and S. Stanek, "Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations" Journal of Mathematical Analysis and Applications, vol. 371, no. 1, pp. 57-68, 2010
    • (2010) Journal of Mathematical Analysis and Applications , vol.371 , Issue.1 , pp. 57-68
    • Agarwal, R.P.1    O'Regan, D.2    Stanek, S.3
  • 15
    • 59849090468 scopus 로고    scopus 로고
    • Unbounded upper and lower solutions method for Sturm-Liouville boundary value problem on infinite intervals
    • H. Lian, P. Wang, and W. Ge, "Unbounded upper and lower solutions method for Sturm-Liouville boundary value problem on infinite intervals" Nonlinear Analysis: Theory, Methods and Applications, vol. 70, no. 7, pp. 2627-2633, 2009
    • (2009) Nonlinear Analysis: Theory, Methods and Applications , vol.70 , Issue.7 , pp. 2627-2633
    • Lian, H.1    Wang, P.2    Ge, W.3
  • 16
    • 30944433189 scopus 로고    scopus 로고
    • Existence of at least three solutions of a second-order three-point boundary value problem
    • R. A. Khan and J. R. L. Webb, "Existence of at least three solutions of a second-order three-point boundary value problem" Nonlinear Analysis: Theory, Methods & Applications, vol. 64, no. 6, pp. 1356-1366, 2006
    • (2006) Nonlinear Analysis: Theory, Methods & Applications , vol.64 , Issue.6 , pp. 1356-1366
    • Khan, R.A.1    Webb, J.R.L.2
  • 17
    • 62949101139 scopus 로고    scopus 로고
    • A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-Type condition
    • M. R. Grossinho, F. Minhos, and A. I. Santos, "A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-Type condition" Nonlinear Analysis, vol. 70, no. 11, pp. 4027-4038, 2009
    • (2009) Nonlinear Analysis , vol.70 , Issue.11 , pp. 4027-4038
    • Grossinho, M.R.1    Minhos, F.2    Santos, A.I.3
  • 19
    • 37349014877 scopus 로고    scopus 로고
    • Theory of fractional differential inequalities and applications
    • V. Lakshmikantham and A. S. Vatsala, "Theory of fractional differential inequalities and applications" Communications in Applied Analysis, vol. 11, no. 3-4, pp. 395-402, 2007
    • (2007) Communications in Applied Analysis , vol.11 , Issue.3-4 , pp. 395-402
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 20
    • 80053531728 scopus 로고    scopus 로고
    • Monotone iterative technique for finite systems of nonlinear Riemann-Liouville fractional differential equations
    • Z. Denton and A. S. Vatsala, "Monotone iterative technique for finite systems of nonlinear Riemann-Liouville fractional differential equations" OpusculaMathematica, vol. 31, no. 3, pp. 327-339, 2011
    • (2011) OpusculaMathematica , vol.31 , Issue.3 , pp. 327-339
    • Denton, Z.1    Vatsala, A.S.2
  • 21
    • 84868201761 scopus 로고    scopus 로고
    • Variational Lyapunov method for fractional differential equations
    • J. V. Devi, F. A. McRae, and Z. Drici, "Variational Lyapunov method for fractional differential equations" Computers & Mathematics with Applications, vol. 64, no. 10, pp. 2982-2989, 2012
    • (2012) Computers & Mathematics with Applications , vol.64 , Issue.10 , pp. 2982-2989
    • Devi, J.V.1    McRae, F.A.2    Drici, Z.3
  • 22
    • 79959409393 scopus 로고    scopus 로고
    • Monotone iterative technique for fractional differential equations with periodic boundary conditions
    • J. D. Ramrez and A. S. Vatsala, "Monotone iterative technique for fractional differential equations with periodic boundary conditions" Opuscula Mathematica, vol. 29, no. 3, pp. 289-304, 2009
    • (2009) Opuscula Mathematica , vol.29 , Issue.3 , pp. 289-304
    • Ramrez, J.D.1    Vatsala, A.S.2
  • 23
    • 84869088094 scopus 로고    scopus 로고
    • Existence of a weak solution for fractional Euler-Lagrange equations
    • L. Bourdin, "Existence of a weak solution for fractional Euler-Lagrange equations" Journal of Mathematical Analysis and Applications, vol. 399, no. 1, pp. 239-251, 2013
    • (2013) Journal of Mathematical Analysis and Applications , vol.399 , Issue.1 , pp. 239-251
    • Bourdin, L.1
  • 24
    • 84883766321 scopus 로고    scopus 로고
    • Existence and uniqueness results for Cauchy problem of variable-order fractional differential equations
    • Y. Xu and Z. He, "Existence and uniqueness results for Cauchy problem of variable-order fractional differential equations" Journal of Applied Mathematics and Computing, vol. 43, no. 1-2, pp. 295-306, 2013
    • (2013) Journal of Applied Mathematics and Computing , vol.43 , Issue.1-2 , pp. 295-306
    • Xu, Y.1    He, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.