-
1
-
-
0002795136
-
On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity
-
F. Keil, W. Mackens, H. Voss, J. Werther, Springer-Verlag Heidelberg
-
K. Diethelm, and A.D. Freed On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity F. Keil, W. Mackens, H. Voss, J. Werther, Scientific Computing in Chemical Engineering IIComputational Fluid Dynamics, Reaction Engineering and Molecular Properties 1999 Springer-Verlag Heidelberg 217 224
-
(1999)
Scientific Computing in Chemical Engineering IIComputational Fluid Dynamics, Reaction Engineering and Molecular Properties
, pp. 217-224
-
-
Diethelm, K.1
Freed, A.D.2
-
3
-
-
0028878140
-
A fractional calculus approach of self-similar protein dynamics
-
W.G. Glockle, and T.F. Nonnenmacher A fractional calculus approach of self-similar protein dynamics Biophys. J. 68 1995 46 53
-
(1995)
Biophys. J.
, vol.68
, pp. 46-53
-
-
Glockle, W.G.1
Nonnenmacher, T.F.2
-
5
-
-
0001983732
-
Fractional calculus: Some basic problems in continuum and statistical mechanics
-
A. Carpinteri, F. Mainardi, Springer-Verlag Wien
-
F. Mainardi Fractional calculus: some basic problems in continuum and statistical mechanics A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics 1997 Springer-Verlag Wien 291 348
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics
, pp. 291-348
-
-
Mainardi, F.1
-
6
-
-
0034598769
-
Fractal streamchemistry and its implications for contaminant transport in catchments
-
J.W. Kirchner, X. Feng, and C. Neal Fractal streamchemistry and its implications for contaminant transport in catchments Nature 403 2000 524 526
-
(2000)
Nature
, vol.403
, pp. 524-526
-
-
Kirchner, J.W.1
Feng, X.2
Neal, C.3
-
11
-
-
0035069924
-
Fractional dispersion, Lévy motion, and the MADE tracer test
-
D.A. Benson, R. Schumer, M.M. Meerschaert, and S.W. Wheatcraft Fractional dispersion, Lévy motion, and the MADE tracer test Transp. Porous Media 42 2001 211 240
-
(2001)
Transp. Porous Media
, vol.42
, pp. 211-240
-
-
Benson, D.A.1
Schumer, R.2
Meerschaert, M.M.3
Wheatcraft, S.W.4
-
13
-
-
0034113992
-
The fractional-order governing equation of Levy motion
-
DOI 10.1029/2000WR900032
-
D.A. Benson, S.W. Wheatcraft, and M.M. Meerschaert The fractional-order governing equation of Lévy motion Water Resour. Res. 36 2000 1413 1423 (Pubitemid 30334242)
-
(2000)
Water Resources Research
, vol.36
, Issue.6
, pp. 1413-1423
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
14
-
-
0036761104
-
Possible problems of scale dependency in applications of the three-dimensional fractional advectiondispersion equation to natural porous media
-
S. Lu, F.J. Molz, and G.J. Fix Possible problems of scale dependency in applications of the three-dimensional fractional advectiondispersion equation to natural porous media Water Resour. Res. 38 2002 1165 1171
-
(2002)
Water Resour. Res.
, vol.38
, pp. 1165-1171
-
-
Lu, S.1
Molz, F.J.2
Fix, G.J.3
-
15
-
-
14644446063
-
Least squares finite-element solution of a fractional order two-point boundary value problem
-
DOI 10.1016/j.camwa.2004.10.003, PII S0898122104003438
-
G.J. Fix, and J.P. Roop Least squares finite-element solution of a fractional order two-point boundary value problem Comput. Math. Appl. 48 2004 1017 1033 (Pubitemid 40319749)
-
(2004)
Computers and Mathematics with Applications
, vol.48
, Issue.7-8
, pp. 1017-1033
-
-
Fix, G.J.1
Roof, J.P.2
-
16
-
-
33646262074
-
Variational formulation for the stationary fractional advection dispersion equation
-
V.J. Erwin, and J.P. Roop Variational formulation for the stationary fractional advection dispersion equation Numer. Methods Partial Differential Equations 22 2006 58 76
-
(2006)
Numer. Methods Partial Differential Equations
, vol.22
, pp. 58-76
-
-
Erwin, V.J.1
Roop, J.P.2
-
17
-
-
70350747741
-
Inverse problem of fractional calculus of variations for partial differential equations
-
J. Cresson Inverse problem of fractional calculus of variations for partial differential equations Commun. Nonlinear Sci. Numer. Simul. 15 2010 987 996
-
(2010)
Commun. Nonlinear Sci. Numer. Simul.
, vol.15
, pp. 987-996
-
-
Cresson, J.1
-
18
-
-
70249121999
-
Existence of periodic solution for a nonlinear fractional differential equation
-
Art. ID 324561, 18 pages
-
M. Belmekki, J.J. Nieto, and R. Rodriguez-Lopez Existence of periodic solution for a nonlinear fractional differential equation Bound. Value Probl. 2009 Art. ID 324561, 18 pages
-
(2009)
Bound. Value Probl.
-
-
Belmekki, M.1
Nieto, J.J.2
Rodriguez-Lopez, R.3
-
19
-
-
67649623211
-
A proof for non existence of periodic solutions in time invariant fractional order systems
-
M.S. Tavazoei, and M. Haeri A proof for non existence of periodic solutions in time invariant fractional order systems Automatica 45 2009 1886 1890
-
(2009)
Automatica
, vol.45
, pp. 1886-1890
-
-
Tavazoei, M.S.1
Haeri, M.2
-
20
-
-
53949111458
-
Basic theory of fractional differential equations
-
V. Lakshmikantham, and A.S. Vatsala Basic theory of fractional differential equations Nonlinear Anal. TMA 69 2008 2677 2682
-
(2008)
Nonlinear Anal. TMA
, vol.69
, pp. 2677-2682
-
-
Lakshmikantham, V.1
Vatsala, A.S.2
-
21
-
-
63449095682
-
Nonsmooth analysis and fractional differential equations
-
J. Vasundhara Devi, and V. Lakshmikantham Nonsmooth analysis and fractional differential equations Nonlinear Anal. TMA 70 2009 4151 4157
-
(2009)
Nonlinear Anal. TMA
, vol.70
, pp. 4151-4157
-
-
Vasundhara Devi, J.1
Lakshmikantham, V.2
-
22
-
-
43949160116
-
Fractional kinetic equation for Hamiltonian chaos, chaotic advection, tracer dynamics and turbulent dispersion
-
G. Zaslavsky Fractional kinetic equation for Hamiltonian chaos, chaotic advection, tracer dynamics and turbulent dispersion Physica D 76 1994 110 122
-
(1994)
Physica D
, vol.76
, pp. 110-122
-
-
Zaslavsky, G.1
-
23
-
-
67349086967
-
Existence and uniqueness for p-type fractional neutral differential equations
-
Yong Zhou, Feng Jiao, and Jing Li Existence and uniqueness for p-type fractional neutral differential equations Nonlinear Anal. TMA 71 2009 2724 2733
-
(2009)
Nonlinear Anal. TMA
, vol.71
, pp. 2724-2733
-
-
Zhou, Y.1
Jiao, F.2
Li, J.3
-
24
-
-
67349177003
-
Existence and uniqueness for fractional neutral differential equations with infinite delay
-
Yong Zhou, Feng Jiao, and Jing Li Existence and uniqueness for fractional neutral differential equations with infinite delay Nonlinear Anal. TMA 71 2009 3249 3256
-
(2009)
Nonlinear Anal. TMA
, vol.71
, pp. 3249-3256
-
-
Zhou, Y.1
Jiao, F.2
Li, J.3
-
25
-
-
77955515765
-
Nonlocal Cauchy problem for fractional evolution equations
-
Yong Zhou, and Feng Jiao Nonlocal Cauchy problem for fractional evolution equations Nonlinear Anal. RWA 11 2010 4465 4475
-
(2010)
Nonlinear Anal. RWA
, vol.11
, pp. 4465-4475
-
-
Zhou, Y.1
Jiao, F.2
-
26
-
-
77958009389
-
A class of fractional evolution equations and optimal controls
-
JinRong Wang, and Yong Zhou A class of fractional evolution equations and optimal controls Nonlinear Anal. RWA 12 2011 262 272
-
(2011)
Nonlinear Anal. RWA
, vol.12
, pp. 262-272
-
-
Wang, J.1
Zhou, Y.2
-
27
-
-
77949264980
-
A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
-
R.P. Agarwal, M. Benchohra, and S. Hamani A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions Acta Appl. Math. 109 2010 973 1033
-
(2010)
Acta Appl. Math.
, vol.109
, pp. 973-1033
-
-
Agarwal, R.P.1
Benchohra, M.2
Hamani, S.3
-
28
-
-
67349155890
-
Boundary value problems for differential equations with fractional order and nonlocal conditions
-
M. Benchohra, S. Hamani, and S.K. Ntouyas Boundary value problems for differential equations with fractional order and nonlocal conditions Nonlinear Anal. TMA 71 2009 2391 2396
-
(2009)
Nonlinear Anal. TMA
, vol.71
, pp. 2391-2396
-
-
Benchohra, M.1
Hamani, S.2
Ntouyas, S.K.3
-
29
-
-
74149089358
-
Positive solutions to singular boundary value problem for nonlinear fractional differential equation
-
Shuqin Zhang Positive solutions to singular boundary value problem for nonlinear fractional differential equation Comput. Math. Appl. 59 2010 1300 1309
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1300-1309
-
-
Zhang, S.1
-
30
-
-
70349131961
-
Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions
-
B. Ahmad, and J.J. Nieto Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions Comput. Math. Appl. 58 2009 1838 1843
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 1838-1843
-
-
Ahmad, B.1
Nieto, J.J.2
-
33
-
-
27644579558
-
Existence of solutions to a class of nonlinear second order two-point boundary value problems
-
DOI 10.1016/j.jmaa.2005.03.043, PII S0022247X0500243X
-
Fuyi Li, Zhangping Liang, and Qi Zhang Existence of solutions to a class of nonlinear second order two-point boundary value problems J. Math. Anal. Appl. 312 2005 357 373 (Pubitemid 41554742)
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.312
, Issue.1
, pp. 357-373
-
-
Li, F.1
Liang, Z.2
Zhang, Q.3
-
34
-
-
76549085102
-
Doubly resonant semilinear elliptic problems via nonsmooth critical point theory
-
J.-N. Corvellec, V.V. Motreanu, and C. Saccon Doubly resonant semilinear elliptic problems via nonsmooth critical point theory J. Differential Equations 248 2010 2064 2091
-
(2010)
J. Differential Equations
, vol.248
, pp. 2064-2091
-
-
Corvellec, J.-N.1
Motreanu, V.V.2
Saccon, C.3
-
35
-
-
73549093365
-
Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems
-
Chun-Lei Tang, and Xing-Ping Wu Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems J. Differential Equations 248 2010 660 692
-
(2010)
J. Differential Equations
, vol.248
, pp. 660-692
-
-
Tang, C.-L.1
Wu, X.-P.2
-
37
-
-
0036027310
-
Lagrangean and Hamiltonian fractional sequential mechanics
-
DOI 10.1023/A:1021389004982
-
M. Klimek Lagrangian and Hamiltonian fractional sequential mechanics Czech. J. Phys. 52 2002 1247 1253 (Pubitemid 36224481)
-
(2002)
Czechoslovak Journal of Physics
, vol.52
, Issue.11
, pp. 1247-1253
-
-
Klimek, M.1
-
38
-
-
0036701004
-
Formulation of Euler-Lagrange equations for fractional variational problems
-
O.P. Agrawal Formulation of Euler-Lagrange equations for fractional variational problems J. Math. Anal. Appl. 272 2002 368 379
-
(2002)
J. Math. Anal. Appl.
, vol.272
, pp. 368-379
-
-
Agrawal, O.P.1
-
39
-
-
33750972567
-
The Hamilton formalism with fractional derivatives
-
DOI 10.1016/j.jmaa.2006.04.076, PII S0022247X06004525
-
E.M. Rabei, K.I. Nawafleh, R.S. Hijjawi, S.I. Muslih, and D. Baleanu The Hamilton formalism with fractional derivatives J. Math. Anal. Appl. 327 2007 891 897 (Pubitemid 44742791)
-
(2007)
Journal of Mathematical Analysis and Applications
, vol.327
, Issue.2
, pp. 891-897
-
-
Rabei, E.M.1
Nawafleh, K.I.2
Hijjawi, R.S.3
Muslih, S.I.4
Baleanu, D.5
|