메뉴 건너뛰기




Volumn 62, Issue 3, 2011, Pages 1181-1199

Existence of solutions for a class of fractional boundary value problems via critical point theory

Author keywords

Boundary value problem; Critical point theory; Existence; Fractional advectiondispersion equation; Fractional differential equations

Indexed keywords

ADVECTION-DISPERSION EQUATION; CRITICAL-POINT THEORY; EXISTENCE; EXISTENCE OF SOLUTIONS; FRACTIONAL DIFFERENTIAL EQUATIONS; FRACTIONAL INTEGRALS; VARIATIONAL STRUCTURES;

EID: 79960993100     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2011.03.086     Document Type: Article
Times cited : (223)

References (41)
  • 3
    • 0028878140 scopus 로고
    • A fractional calculus approach of self-similar protein dynamics
    • W.G. Glockle, and T.F. Nonnenmacher A fractional calculus approach of self-similar protein dynamics Biophys. J. 68 1995 46 53
    • (1995) Biophys. J. , vol.68 , pp. 46-53
    • Glockle, W.G.1    Nonnenmacher, T.F.2
  • 5
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics
    • A. Carpinteri, F. Mainardi, Springer-Verlag Wien
    • F. Mainardi Fractional calculus: some basic problems in continuum and statistical mechanics A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics 1997 Springer-Verlag Wien 291 348
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 6
    • 0034598769 scopus 로고    scopus 로고
    • Fractal streamchemistry and its implications for contaminant transport in catchments
    • J.W. Kirchner, X. Feng, and C. Neal Fractal streamchemistry and its implications for contaminant transport in catchments Nature 403 2000 524 526
    • (2000) Nature , vol.403 , pp. 524-526
    • Kirchner, J.W.1    Feng, X.2    Neal, C.3
  • 13
    • 0034113992 scopus 로고    scopus 로고
    • The fractional-order governing equation of Levy motion
    • DOI 10.1029/2000WR900032
    • D.A. Benson, S.W. Wheatcraft, and M.M. Meerschaert The fractional-order governing equation of Lévy motion Water Resour. Res. 36 2000 1413 1423 (Pubitemid 30334242)
    • (2000) Water Resources Research , vol.36 , Issue.6 , pp. 1413-1423
    • Benson, D.A.1    Wheatcraft, S.W.2    Meerschaert, M.M.3
  • 14
    • 0036761104 scopus 로고    scopus 로고
    • Possible problems of scale dependency in applications of the three-dimensional fractional advectiondispersion equation to natural porous media
    • S. Lu, F.J. Molz, and G.J. Fix Possible problems of scale dependency in applications of the three-dimensional fractional advectiondispersion equation to natural porous media Water Resour. Res. 38 2002 1165 1171
    • (2002) Water Resour. Res. , vol.38 , pp. 1165-1171
    • Lu, S.1    Molz, F.J.2    Fix, G.J.3
  • 15
    • 14644446063 scopus 로고    scopus 로고
    • Least squares finite-element solution of a fractional order two-point boundary value problem
    • DOI 10.1016/j.camwa.2004.10.003, PII S0898122104003438
    • G.J. Fix, and J.P. Roop Least squares finite-element solution of a fractional order two-point boundary value problem Comput. Math. Appl. 48 2004 1017 1033 (Pubitemid 40319749)
    • (2004) Computers and Mathematics with Applications , vol.48 , Issue.7-8 , pp. 1017-1033
    • Fix, G.J.1    Roof, J.P.2
  • 16
    • 33646262074 scopus 로고    scopus 로고
    • Variational formulation for the stationary fractional advection dispersion equation
    • V.J. Erwin, and J.P. Roop Variational formulation for the stationary fractional advection dispersion equation Numer. Methods Partial Differential Equations 22 2006 58 76
    • (2006) Numer. Methods Partial Differential Equations , vol.22 , pp. 58-76
    • Erwin, V.J.1    Roop, J.P.2
  • 17
    • 70350747741 scopus 로고    scopus 로고
    • Inverse problem of fractional calculus of variations for partial differential equations
    • J. Cresson Inverse problem of fractional calculus of variations for partial differential equations Commun. Nonlinear Sci. Numer. Simul. 15 2010 987 996
    • (2010) Commun. Nonlinear Sci. Numer. Simul. , vol.15 , pp. 987-996
    • Cresson, J.1
  • 18
    • 70249121999 scopus 로고    scopus 로고
    • Existence of periodic solution for a nonlinear fractional differential equation
    • Art. ID 324561, 18 pages
    • M. Belmekki, J.J. Nieto, and R. Rodriguez-Lopez Existence of periodic solution for a nonlinear fractional differential equation Bound. Value Probl. 2009 Art. ID 324561, 18 pages
    • (2009) Bound. Value Probl.
    • Belmekki, M.1    Nieto, J.J.2    Rodriguez-Lopez, R.3
  • 19
    • 67649623211 scopus 로고    scopus 로고
    • A proof for non existence of periodic solutions in time invariant fractional order systems
    • M.S. Tavazoei, and M. Haeri A proof for non existence of periodic solutions in time invariant fractional order systems Automatica 45 2009 1886 1890
    • (2009) Automatica , vol.45 , pp. 1886-1890
    • Tavazoei, M.S.1    Haeri, M.2
  • 20
    • 53949111458 scopus 로고    scopus 로고
    • Basic theory of fractional differential equations
    • V. Lakshmikantham, and A.S. Vatsala Basic theory of fractional differential equations Nonlinear Anal. TMA 69 2008 2677 2682
    • (2008) Nonlinear Anal. TMA , vol.69 , pp. 2677-2682
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 21
    • 63449095682 scopus 로고    scopus 로고
    • Nonsmooth analysis and fractional differential equations
    • J. Vasundhara Devi, and V. Lakshmikantham Nonsmooth analysis and fractional differential equations Nonlinear Anal. TMA 70 2009 4151 4157
    • (2009) Nonlinear Anal. TMA , vol.70 , pp. 4151-4157
    • Vasundhara Devi, J.1    Lakshmikantham, V.2
  • 22
    • 43949160116 scopus 로고
    • Fractional kinetic equation for Hamiltonian chaos, chaotic advection, tracer dynamics and turbulent dispersion
    • G. Zaslavsky Fractional kinetic equation for Hamiltonian chaos, chaotic advection, tracer dynamics and turbulent dispersion Physica D 76 1994 110 122
    • (1994) Physica D , vol.76 , pp. 110-122
    • Zaslavsky, G.1
  • 23
    • 67349086967 scopus 로고    scopus 로고
    • Existence and uniqueness for p-type fractional neutral differential equations
    • Yong Zhou, Feng Jiao, and Jing Li Existence and uniqueness for p-type fractional neutral differential equations Nonlinear Anal. TMA 71 2009 2724 2733
    • (2009) Nonlinear Anal. TMA , vol.71 , pp. 2724-2733
    • Zhou, Y.1    Jiao, F.2    Li, J.3
  • 24
    • 67349177003 scopus 로고    scopus 로고
    • Existence and uniqueness for fractional neutral differential equations with infinite delay
    • Yong Zhou, Feng Jiao, and Jing Li Existence and uniqueness for fractional neutral differential equations with infinite delay Nonlinear Anal. TMA 71 2009 3249 3256
    • (2009) Nonlinear Anal. TMA , vol.71 , pp. 3249-3256
    • Zhou, Y.1    Jiao, F.2    Li, J.3
  • 25
    • 77955515765 scopus 로고    scopus 로고
    • Nonlocal Cauchy problem for fractional evolution equations
    • Yong Zhou, and Feng Jiao Nonlocal Cauchy problem for fractional evolution equations Nonlinear Anal. RWA 11 2010 4465 4475
    • (2010) Nonlinear Anal. RWA , vol.11 , pp. 4465-4475
    • Zhou, Y.1    Jiao, F.2
  • 26
    • 77958009389 scopus 로고    scopus 로고
    • A class of fractional evolution equations and optimal controls
    • JinRong Wang, and Yong Zhou A class of fractional evolution equations and optimal controls Nonlinear Anal. RWA 12 2011 262 272
    • (2011) Nonlinear Anal. RWA , vol.12 , pp. 262-272
    • Wang, J.1    Zhou, Y.2
  • 27
    • 77949264980 scopus 로고    scopus 로고
    • A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
    • R.P. Agarwal, M. Benchohra, and S. Hamani A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions Acta Appl. Math. 109 2010 973 1033
    • (2010) Acta Appl. Math. , vol.109 , pp. 973-1033
    • Agarwal, R.P.1    Benchohra, M.2    Hamani, S.3
  • 28
    • 67349155890 scopus 로고    scopus 로고
    • Boundary value problems for differential equations with fractional order and nonlocal conditions
    • M. Benchohra, S. Hamani, and S.K. Ntouyas Boundary value problems for differential equations with fractional order and nonlocal conditions Nonlinear Anal. TMA 71 2009 2391 2396
    • (2009) Nonlinear Anal. TMA , vol.71 , pp. 2391-2396
    • Benchohra, M.1    Hamani, S.2    Ntouyas, S.K.3
  • 29
    • 74149089358 scopus 로고    scopus 로고
    • Positive solutions to singular boundary value problem for nonlinear fractional differential equation
    • Shuqin Zhang Positive solutions to singular boundary value problem for nonlinear fractional differential equation Comput. Math. Appl. 59 2010 1300 1309
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1300-1309
    • Zhang, S.1
  • 30
    • 70349131961 scopus 로고    scopus 로고
    • Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions
    • B. Ahmad, and J.J. Nieto Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions Comput. Math. Appl. 58 2009 1838 1843
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1838-1843
    • Ahmad, B.1    Nieto, J.J.2
  • 33
    • 27644579558 scopus 로고    scopus 로고
    • Existence of solutions to a class of nonlinear second order two-point boundary value problems
    • DOI 10.1016/j.jmaa.2005.03.043, PII S0022247X0500243X
    • Fuyi Li, Zhangping Liang, and Qi Zhang Existence of solutions to a class of nonlinear second order two-point boundary value problems J. Math. Anal. Appl. 312 2005 357 373 (Pubitemid 41554742)
    • (2005) Journal of Mathematical Analysis and Applications , vol.312 , Issue.1 , pp. 357-373
    • Li, F.1    Liang, Z.2    Zhang, Q.3
  • 34
    • 76549085102 scopus 로고    scopus 로고
    • Doubly resonant semilinear elliptic problems via nonsmooth critical point theory
    • J.-N. Corvellec, V.V. Motreanu, and C. Saccon Doubly resonant semilinear elliptic problems via nonsmooth critical point theory J. Differential Equations 248 2010 2064 2091
    • (2010) J. Differential Equations , vol.248 , pp. 2064-2091
    • Corvellec, J.-N.1    Motreanu, V.V.2    Saccon, C.3
  • 35
    • 73549093365 scopus 로고    scopus 로고
    • Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems
    • Chun-Lei Tang, and Xing-Ping Wu Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems J. Differential Equations 248 2010 660 692
    • (2010) J. Differential Equations , vol.248 , pp. 660-692
    • Tang, C.-L.1    Wu, X.-P.2
  • 37
    • 0036027310 scopus 로고    scopus 로고
    • Lagrangean and Hamiltonian fractional sequential mechanics
    • DOI 10.1023/A:1021389004982
    • M. Klimek Lagrangian and Hamiltonian fractional sequential mechanics Czech. J. Phys. 52 2002 1247 1253 (Pubitemid 36224481)
    • (2002) Czechoslovak Journal of Physics , vol.52 , Issue.11 , pp. 1247-1253
    • Klimek, M.1
  • 38
    • 0036701004 scopus 로고    scopus 로고
    • Formulation of Euler-Lagrange equations for fractional variational problems
    • O.P. Agrawal Formulation of Euler-Lagrange equations for fractional variational problems J. Math. Anal. Appl. 272 2002 368 379
    • (2002) J. Math. Anal. Appl. , vol.272 , pp. 368-379
    • Agrawal, O.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.