메뉴 건너뛰기




Volumn 33, Issue 2, 2012, Pages 191-198

Exponentially weighted moving average charts for detecting concept drift

Author keywords

Change detection; Concept drift; Streaming classification

Indexed keywords

CHANGE DETECTION; COMPUTATIONALLY EFFICIENT; CONCEPT DRIFTS; DATA POINTS; EXPONENTIALLY WEIGHTED MOVING AVERAGE CHART; FALSE POSITIVE DETECTION; MISCLASSIFICATION RATES; STREAMING DATA; UNDERLYING DISTRIBUTION;

EID: 81255213868     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2011.08.019     Document Type: Article
Times cited : (336)

References (24)
  • 4
    • 0042902353 scopus 로고
    • An efficient nonparametric detection scheme and its application to surveillance of a Bernoulli process with unknown baseline
    • Bell, C.; Gordon, L.; Pollak, M.; 1994. An efficient nonparametric detection scheme and its application to surveillance of a Bernoulli process with unknown baseline. In: Change Point Problem, vol. 23, pp. 7-27.
    • (1994) Change Point Problem , vol.23 , pp. 7-27
    • Bell, C.1    Gordon, L.2    Pollak, M.3
  • 5
    • 0000259511 scopus 로고    scopus 로고
    • Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms
    • T.G. Dietterich Approximate statistical tests for comparing supervised classification learning algorithms Neural Comput. 10 1998 1895 1923 (Pubitemid 128463689)
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 6
    • 0742323983 scopus 로고    scopus 로고
    • A general framework for mining massive data stream
    • P. Domingos, and G. Hulten A general framework for mining massive data stream J. Comput. Graph. Statist. 12 2003 2003
    • (2003) J. Comput. Graph. Statist. , vol.12 , pp. 2003
    • Domingos, P.1    Hulten, G.2
  • 8
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • R.M. Haralick Statistical and structural approaches to texture Proc. IEEE 67 5 1979 786 804
    • (1979) Proc. IEEE , vol.67 , Issue.5 , pp. 786-804
    • Haralick, R.M.1
  • 11
    • 0033824429 scopus 로고    scopus 로고
    • Image recognition and neuronal networks: Intelligent systems for the improvement of imaging information
    • S.A. Karkanis, G.D. Magoulas, and N. Theofanous Image recognition and neuronal networks: Intelligent systems for the improvement of imaging information Minimal Invasive Therapy Allied Technol. 9 3-4 2000 225 230
    • (2000) Minimal Invasive Therapy Allied Technol. , vol.9 , Issue.34 , pp. 225-230
    • Karkanis, S.A.1    Magoulas, G.D.2    Theofanous, N.3
  • 13
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for driffting concepts
    • J.Z. Kolter, and M.A. Maloof Dynamic weighted majority: An ensemble method for driffting concepts J. Machine Learn. Res. 8 2007 2755 2790
    • (2007) J. Machine Learn. Res. , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 14
    • 79951764198 scopus 로고    scopus 로고
    • Using control charts for detecting concept change in streaming data
    • Kuncheva, L.I.; 2009. Using control charts for detecting concept change in streaming data. Tech. rep.; Bangor University.
    • (2009) Tech. Rep.; Bangor University
    • Kuncheva, L.I.1
  • 16
    • 33646409561 scopus 로고    scopus 로고
    • An adaptive nearest neighbor classification algorithm for data streams
    • Law, Y.-N.; Zaniolo, C.; 2005. An adaptive nearest neighbor classification algorithm for data streams. In: PKDD, pp. 108-120.
    • (2005) PKDD , pp. 108-120
    • Law, Y.-N.1    Zaniolo, C.2
  • 17
    • 0018896107 scopus 로고
    • A simple cumulative sum type statistic for the change-point problem with zero-one observations
    • A. Pettitt A simple cumulative sum type statistic for the change-point problem with zero-one observations Biometrika 67 1 1980 79 84 (Pubitemid 10111076)
    • (1980) Biometrika , vol.67 , Issue.1 , pp. 79-84
    • Pettitt, A.N.1
  • 18
    • 0032761172 scopus 로고    scopus 로고
    • A CUSUM chart for monitoring a proportion when inspecting continuously
    • M. Reynolds, and Z. Stoumbos A CUSUM chart for monitoring a proportion when inspecting continuously J. Qual. Technol. 31 1 1999 87 108
    • (1999) J. Qual. Technol. , vol.31 , Issue.1 , pp. 87-108
    • Reynolds, M.1    Stoumbos, Z.2
  • 19
    • 0033903394 scopus 로고
    • Control chart tests based on geometric moving averages
    • S.W. Roberts Control chart tests based on geometric moving averages Technometrics 42 1 1959 97 101
    • (1959) Technometrics , vol.42 , Issue.1 , pp. 97-101
    • Roberts, S.W.1
  • 20
    • 3142543620 scopus 로고    scopus 로고
    • CUSUM charts for signalling varying location shifts
    • R.S. Sparks CUSUM charts for signalling varying location shifts J. Qual. Technol. 32 2000
    • (2000) J. Qual. Technol. , vol.32
    • Sparks, R.S.1
  • 21
    • 42749085766 scopus 로고    scopus 로고
    • Adaptive threshold computation for CUSUM-type procedures in change detection and isolation problems
    • G. Verdier, N. Hilgert, and J.-P. Vila Adaptive threshold computation for CUSUM-type procedures in change detection and isolation problems Comput. Statist. Data Anal. 52 9 2008 4161 4174
    • (2008) Comput. Statist. Data Anal. , vol.52 , Issue.9 , pp. 4161-4174
    • Verdier, G.1    Hilgert, N.2    Vila, J.-P.3
  • 22
    • 1842451173 scopus 로고    scopus 로고
    • A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection
    • DOI 10.1111/1539-6975.00023
    • S. Viaene, R.A. Derrig, B. Baesens, and G. Dedene A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection J. Risk Insurance 69 2002 373 421 (Pubitemid 40830725)
    • (2002) Journal of Risk and Insurance , vol.69 , Issue.3 , pp. 373-421
    • Viaene, S.1    Derrig, R.A.2    Baesens, B.3    Dedene, G.4
  • 23
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer, and M. Kubat Learning in the presence of concept drift and hidden contexts Machine Learn. 23 1996 69 101 (Pubitemid 126737384)
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1
  • 24
    • 65249096695 scopus 로고    scopus 로고
    • EWMA control charts for monitoring high-yield processes based on non-transformed observations
    • A.B. Yeh, R.N. Mcgrath, M.A. Sembower, and Q. Shen EWMA control charts for monitoring high-yield processes based on non-transformed observations Internat. J. Prod. Res. 46 20 2008 5679 5699
    • (2008) Internat. J. Prod. Res. , vol.46 , Issue.20 , pp. 5679-5699
    • Yeh, A.B.1    McGrath, R.N.2    Sembower, M.A.3    Shen, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.