메뉴 건너뛰기




Volumn 15, Issue 1, 2014, Pages

A comparative study of cell classifiers for image-based high-throughput screening

Author keywords

[No Author keywords available]

Indexed keywords

CELLS; CYTOLOGY; DATA VISUALIZATION; DISCRIMINANT ANALYSIS; IMAGE CLASSIFICATION; ITERATIVE METHODS; LANTHANUM COMPOUNDS; RADIAL BASIS FUNCTION NETWORKS; THROUGHPUT;

EID: 84910144781     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-15-342     Document Type: Article
Times cited : (12)

References (40)
  • 2
    • 77149130553 scopus 로고    scopus 로고
    • Automatedmicroscopy for high-content RNAi screening
    • Conrad C, Gerlich DW: Automatedmicroscopy for high-content RNAi screening. J Cell Biol 2010, 188(4):453-461.
    • (2010) J Cell Biol , vol.188 , Issue.4 , pp. 453-461
    • Conrad, C.1    Gerlich, D.W.2
  • 6
    • 84884928887 scopus 로고    scopus 로고
    • BIOCAT: a pattern recognition platform for customizable biological image classification and annotation
    • Zhou J, Lamichhane S, Sterne G, Ye B, Peng H: BIOCAT: a pattern recognition platform for customizable biological image classification and annotation. BMC Bioinformatics 2013, 14:291.
    • (2013) BMC Bioinformatics , vol.14 , pp. 291
    • Zhou, J.1    Lamichhane, S.2    Sterne, G.3    Ye, B.4    Peng, H.5
  • 10
    • 44349190845 scopus 로고    scopus 로고
    • A reliable method for cell phenotype image classification
    • Nanni L, Lumini A: A reliable method for cell phenotype image classification. Artif IntellMed 2008, 43(2):87-97.
    • (2008) Artif IntellMed , vol.43 , Issue.2 , pp. 87-97
    • Nanni, L.1    Lumini, A.2
  • 12
    • 13344280993 scopus 로고    scopus 로고
    • Boosting accuracy of automated classification of fluorescence microscope images for location proteomics
    • Huang K, Murphy R: Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinformatics 2004, 5:78.
    • (2004) BMC Bioinformatics , vol.5 , pp. 78
    • Huang, K.1    Murphy, R.2
  • 13
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: a review of classification techniques
    • Kotsiantis SB: Supervised machine learning: a review of classification techniques. Informatica 2007, 31(3):249-268.
    • (2007) Informatica , vol.31 , Issue.3 , pp. 249-268
    • Kotsiantis, S.B.1
  • 14
    • 0038636391 scopus 로고    scopus 로고
    • A comparative assessment of classification methods
    • Kiang MY: A comparative assessment of classification methods. Decis Support Syst 2003, 35(4):441-454.
    • (2003) Decis Support Syst , vol.35 , Issue.4 , pp. 441-454
    • Kiang, M.Y.1
  • 20
    • 84989313684 scopus 로고    scopus 로고
    • FARSIGHT toolkit [http://www.farsight-toolkit.org/wiki/FARSIGHT_Toolkit]
  • 21
    • 77951959633 scopus 로고    scopus 로고
    • EBImage-an R package for image processing with applications to cellular phenotypes
    • Pau G, Fuchs F, Sklyar O, Boutros M, Huber W: EBImage-an R package for image processing with applications to cellular phenotypes. Bioinformatics 2010, 26(7):979-981.
    • (2010) Bioinformatics , vol.26 , Issue.7 , pp. 979-981
    • Pau, G.1    Fuchs, F.2    Sklyar, O.3    Boutros, M.4    Huber, W.5
  • 23
    • 84989353125 scopus 로고    scopus 로고
    • CellXpress [http://www.cellxpress.org]
  • 25
    • 84863198481 scopus 로고    scopus 로고
    • Annotated high-throughput microscopy image sets for validation
    • Ljosa V, Sokolnicki KL, Carpenter AE: Annotated high-throughput microscopy image sets for validation. Nat Methods 2012, 9(7):637.
    • (2012) Nat Methods , vol.9 , Issue.7 , pp. 637
    • Ljosa, V.1    Sokolnicki, K.L.2    Carpenter, A.E.3
  • 28
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J, Hastie T, Tibshirani R: Additive logistic regression: a statistical view of boosting. Ann Stat 2000, 95(2):337-407.
    • (2000) Ann Stat , vol.95 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 29
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • Hua S, Sun Z: Support vector machine approach for protein subcellular localization prediction. Bioinformatics 2001, 17:721-728.
    • (2001) Bioinformatics , vol.17 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 30
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • 27:1-27:27.
    • Chang CC, Lin CJ: LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2011, 2:27:1-27:27.
    • (2011) ACM Trans Intell Syst Technol , vol.2
    • Chang, C.C.1    Lin, C.J.2
  • 34
    • 84989282571 scopus 로고    scopus 로고
    • CellMorph [http://www.ebi.ac.uk/huber-srv/cellmorph/]
  • 36
    • 34548160247 scopus 로고    scopus 로고
    • A note on Platt's probabilistic outputs for support vector machines
    • Lin HT, Lin CJ, Weng R: A note on Platt's probabilistic outputs for support vector machines. Mach Learn 2007, 68(3):267-276.
    • (2007) Mach Learn , vol.68 , Issue.3 , pp. 267-276
    • Lin, H.T.1    Lin, C.J.2    Weng, R.3
  • 37
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press
    • Platt JC: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers. MIT Press; 1999:61-74.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 38
    • 79954576326 scopus 로고    scopus 로고
    • Comparison ofmultivariate data analysis strategies for high-content screening
    • Kummel A, Selzer P, Beibel M, Gubler H, Parker CN, Gabriel D: Comparison ofmultivariate data analysis strategies for high-content screening. J Biomol Screen 2011, 16(3):338-347.
    • (2011) J Biomol Screen , vol.16 , Issue.3 , pp. 338-347
    • Kummel, A.1    Selzer, P.2    Beibel, M.3    Gubler, H.4    Parker, C.N.5    Gabriel, D.6
  • 39
    • 85032752151 scopus 로고    scopus 로고
    • Informatics challenges of high-throughput microscopy
    • Zhou X, Wong STC: Informatics challenges of high-throughput microscopy. IEEE Signal Process Mag 2006, 23:63-72.
    • (2006) IEEE Signal Process Mag , vol.23 , pp. 63-72
    • Zhou, X.1    Wong, S.T.C.2
  • 40
    • 77952474987 scopus 로고    scopus 로고
    • Cellular heterogeneity: do differences make a difference?
    • Altschuler SJ, Wu LF: Cellular heterogeneity: do differences make a difference? Cell 2010, 141(4):559-563.
    • (2010) Cell , vol.141 , Issue.4 , pp. 559-563
    • Altschuler, S.J.1    Wu, L.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.