메뉴 건너뛰기




Volumn , Issue , 2012, Pages 221-231

Structured ramp loss minimization for machine translation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; COMPUTER AIDED LANGUAGE TRANSLATION; LEARNING ALGORITHMS; MACHINE LEARNING;

EID: 84903444552     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (60)

References (51)
  • 1
    • 84855693439 scopus 로고    scopus 로고
    • Online learning methods for discriminative training of phrase based statistical machine translation
    • A. Arun and P. Koehn. 2007. Online learning methods for discriminative training of phrase based statistical machine translation. In Proc. of MT Summit XI.
    • (2007) Proc. of MT Summit , pp. XI
    • Arun, A.1    Koehn, P.2
  • 2
    • 80053357749 scopus 로고    scopus 로고
    • Probabilistic inference for machine translation
    • P. Blunsom and M. Osborne. 2008. Probabilistic inference for machine translation. In Proc. of EMNLP.
    • (2008) Proc. of EMNLP
    • Blunsom, P.1    Osborne, M.2
  • 3
    • 80053265424 scopus 로고    scopus 로고
    • A discriminative latent variable model for statistical machine translation
    • P. Blunsom, T. Cohn, and M. Osborne. 2008. A discriminative latent variable model for statistical machine translation. In Proc. of ACL.
    • (2008) Proc. of ACL
    • Blunsom, P.1    Cohn, T.2    Osborne, M.3
  • 8
    • 84907341533 scopus 로고    scopus 로고
    • Batch tuning strategies for statistical machine translation
    • C. Cherry and G. Foster. 2012. Batch tuning strategies for statistical machine translation. In Proc. of NAACL.
    • (2012) Proc. of NAACL
    • Cherry, C.1    Foster, G.2
  • 9
    • 77955886666 scopus 로고    scopus 로고
    • Online largemargin training of syntactic and structural translation features
    • D. Chiang, Y. Marton, and P. Resnik. 2008. Online largemargin training of syntactic and structural translation features. In Proc. of EMNLP.
    • (2008) Proc. of EMNLP
    • Chiang, D.1    Marton, Y.2    Resnik, P.3
  • 10
    • 84863365416 scopus 로고    scopus 로고
    • 11,001 new features for statistical machine translation
    • D. Chiang, W. Wang, and K. Knight. 2009. 11,001 new features for statistical machine translation. In Proc. of NAACL-HLT.
    • (2009) Proc. of NAACL-HLT
    • Chiang, D.1    Wang, W.2    Knight, K.3
  • 11
    • 84859893686 scopus 로고    scopus 로고
    • A hierarchical phrase-based model for statistical machine translation
    • D. Chiang. 2005. A hierarchical phrase-based model for statistical machine translation. In Proc. of ACL.
    • (2005) Proc. of ACL
    • Chiang, D.1
  • 12
    • 34347360650 scopus 로고    scopus 로고
    • Hierarchical phrase-based translation
    • D. Chiang. 2007. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201-228.
    • (2007) Computational Linguistics , vol.33 , Issue.2 , pp. 201-228
    • Chiang, D.1
  • 13
    • 84859020282 scopus 로고    scopus 로고
    • Better hypothesis testing for statistical machine translation: Controlling for optimizer instability
    • J. H. Clark, C. Dyer, A. Lavie, and N. A. Smith. 2011. Better hypothesis testing for statistical machine translation: Controlling for optimizer instability. In Proc. of ACL.
    • (2011) Proc. of ACL
    • Clark, J.H.1    Dyer, C.2    Lavie, A.3    Smith, N.A.4
  • 14
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms
    • M. Collins. 2002. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Proc. of EMNLP.
    • (2002) Proc. of EMNLP
    • Collins, M.1
  • 20
    • 84858385957 scopus 로고    scopus 로고
    • Softmax-margin crfs: Training log-linear models with cost functions
    • K. Gimpel and N. A. Smith. 2010. Softmax-margin CRFs: Training log-linear models with cost functions. In Proc. of NAACL.
    • (2010) Proc. of NAACL
    • Gimpel, K.1    Smith, N.A.2
  • 23
    • 84871614543 scopus 로고    scopus 로고
    • A novel loss function for the overall risk criterion based discriminative training of hmm models
    • J. Kaiser, B. Horvat, and Z. Kacic. 2000. A novel loss function for the overall risk criterion based discriminative training of hmm models. In Proc. of ICSLP.
    • (2000) Proc. of ICSLP
    • Kaiser, J.1    Horvat, B.2    Kacic, Z.3
  • 26
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. of ICML.
    • (2001) Proc. of ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 28
    • 80053275857 scopus 로고    scopus 로고
    • First- and second-order expectation semirings with applications to minimum-risk training on translation forests
    • Z. Li and J. Eisner. 2009. First- and second-order expectation semirings with applications to minimum-risk training on translation forests. In Proc. of EMNLP.
    • (2009) Proc. of EMNLP
    • Li, Z.1    Eisner, J.2
  • 30
    • 33644584883 scopus 로고    scopus 로고
    • Orange: A method for evaluating automatic evaluation metrics for machine translation
    • Chin-Yew Lin and Franz Josef Och. 2004. Orange: a method for evaluating automatic evaluation metrics for machine translation. In Proc. of Coling.
    • (2004) Proc. of Coling
    • Lin, C.1    Och, F.J.2
  • 31
    • 80053350863 scopus 로고    scopus 로고
    • Lattice-based minimum error rate training for statistical machine translation
    • W. Macherey, F. Och, I. Thayer, and J. Uszkoreit. 2008. Lattice-based minimum error rate training for statistical machine translation. In EMNLP.
    • (2008) EMNLP
    • Macherey, W.1    Och, F.2    Thayer, I.3    Uszkoreit, J.4
  • 33
    • 85162419778 scopus 로고    scopus 로고
    • Generalization bounds and consistency for latent structural probit and ramp loss
    • D. McAllester and J. Keshet. 2011. Generalization bounds and consistency for latent structural probit and ramp loss. In Proc. of NIPS.
    • (2011) Proc. of NIPS
    • McAllester, D.1    Keshet, J.2
  • 34
    • 85162488701 scopus 로고    scopus 로고
    • Direct loss minimization for structured prediction
    • D. McAllester, T. Hazan, and J. Keshet. 2010. Direct loss minimization for structured prediction. In Proc. of NIPS.
    • (2010) Proc. of NIPS
    • McAllester, D.1    Hazan, T.2    Keshet, J.3
  • 35
    • 84926177604 scopus 로고    scopus 로고
    • Random restarts in minimum error rate training for statistical machine translation
    • R. C. Moore and C. Quirk. 2008. Random restarts in minimum error rate training for statistical machine translation. In Proc. of Coling.
    • (2008) Proc. of Coling
    • Moore, R.C.1    Quirk, C.2
  • 36
    • 85101305674 scopus 로고    scopus 로고
    • Discriminative training and maximum entropy models for statistical machine translation
    • F. J. Och and H. Ney. 2002. Discriminative training and maximum entropy models for statistical machine translation. In Proc. of ACL.
    • (2002) Proc. of ACL
    • Och, F.J.1    Ney, H.2
  • 37
    • 0042879653 scopus 로고    scopus 로고
    • A systematic comparison of various statistical alignment models
    • F. J. Och and H. Ney. 2003. A systematic comparison of various statistical alignment models. Computational Linguistics, 29(1).
    • (2003) Computational Linguistics , vol.29 , pp. 1
    • Och, F.J.1    Ney, H.2
  • 38
    • 22944447077 scopus 로고    scopus 로고
    • Minimum error rate training for statistical machine translation
    • F. J. Och. 2003. Minimum error rate training for statistical machine translation. In Proc. of ACL.
    • (2003) Proc. of ACL
    • Och, F.J.1
  • 39
    • 0013363097 scopus 로고    scopus 로고
    • BLEU: A method for automatic evaluation of machine translation
    • K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2001. BLEU: a method for automatic evaluation of machine translation. In Proc. of ACL.
    • (2001) Proc. of ACL
    • Papineni, K.1    Roukos, S.2    Ward, T.3    Zhu, W.J.4
  • 40
    • 0036296863 scopus 로고    scopus 로고
    • Minimum phone error and i-smoothing for improved discrimative training
    • D. Povey and P. C. Woodland. 2002. Minimum phone error and I-smoothing for improved discrimative training. In Proc. of ICASSP.
    • (2002) Proc. of ICASSP
    • Povey, D.1    Woodland, P.C.2
  • 41
    • 33745824894 scopus 로고    scopus 로고
    • Conditional random fields for object recognition
    • A. Quattoni, M. Collins, and T. Darrell. 2004. Conditional random fields for object recognition. In NIPS 17.
    • (2004) NIPS , pp. 17
    • Quattoni, A.1    Collins, M.2    Darrell, T.3
  • 43
    • 0030181951 scopus 로고    scopus 로고
    • A maximum entropy approach to adaptive statistical language modeling
    • R. Rosenfeld. 1996. A maximum entropy approach to adaptive statistical language modeling. Computer, Speech and Language, 10(3).
    • (1996) Computer, Speech and Language , vol.10 , Issue.3
    • Rosenfeld, R.1
  • 44
    • 84961299250 scopus 로고    scopus 로고
    • Minimum risk annealing for training log-linear models
    • D. A. Smith and J. Eisner. 2006. Minimum risk annealing for training log-linear models. In Proc. of COLING-ACL.
    • (2006) Proc. of COLING-ACL
    • Smith, D.A.1    Eisner, J.2
  • 45
    • 84891308106 scopus 로고    scopus 로고
    • SRILM-an extensible language modeling toolkit
    • A. Stolcke. 2002. SRILM-an extensible language modeling toolkit. In Proc. of ICSLP.
    • (2002) Proc. of ICSLP
    • Stolcke, A.1
  • 49
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural svms with latent variables
    • C. J. Yu and T. Joachims. 2009. Learning structural SVMs with latent variables. In Proc. of ICML.
    • (2009) Proc. of ICML
    • Yu, C.J.1    Joachims, T.2
  • 50
    • 77951160349 scopus 로고    scopus 로고
    • The concaveconvex procedure (cccp)
    • MIT Press
    • A. L. Yuille and Anand Rangarajan. 2002. The concaveconvex procedure (CCCP). In Proc. of NIPS. MIT Press.
    • (2002) Proc. of NIPS
    • Yuille, A.L.1    Rangarajan, A.2
  • 51
    • 78650170616 scopus 로고    scopus 로고
    • A systematic comparison of training criteria for statistical machine translation
    • R. Zens, S. Hasan, and H. Ney. 2007. A systematic comparison of training criteria for statistical machine translation. In Proc. of EMNLP.
    • (2007) Proc. of EMNLP
    • Zens, R.1    Hasan, S.2    Ney, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.