-
2
-
-
84858972572
-
Making deep belief networks effective for large vocabulary continuous speech recognition
-
T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. Novak, and A. Mohamed, "Making deep belief networks effective for large vocabulary continuous speech recognition, " in Proc. Workshop on Automatic Speech Recognition and Understanding, pp. 30-35, 2011.
-
(2011)
Proc. Workshop on Automatic Speech Recognition and Understanding
, pp. 30-35
-
-
Sainath, T.N.1
Kingsbury, B.2
Ramabhadran, B.3
Fousek, P.4
Novak, P.5
Mohamed, A.6
-
3
-
-
84055222005
-
Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
-
G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition, " IEEE Trans. on Audio, Speech and Language Processing, vol. 20, no. 1, pp. 30-42, 2012.
-
(2012)
IEEE Trans. on Audio, Speech and Language Processing
, vol.20
, Issue.1
, pp. 30-42
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
4
-
-
84878539964
-
Application of pretrained deep neural networks to large vocabulary speech recognition
-
N. Jaitly, P. Nguyen, and V. Vanhoucke, "Application of pretrained deep neural networks to large vocabulary speech recognition", in Proc. Interspeech, 2012.
-
(2012)
Proc. Interspeech
-
-
Jaitly, N.1
Nguyen, P.2
Vanhoucke, V.3
-
5
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, " IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, 2012.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.10
Kingsbury, B.11
-
6
-
-
84890491198
-
Recent advances in deep learning for speech research at microsoft
-
L. Deng, J. Li, J. -T. Huang et al. "Recent advances in deep learning for speech research at Microsoft, " in Proc. ICASSP, 2013.
-
(2013)
Proc. ICASSP
-
-
Deng, L.1
Li, J.2
Huang, J.-T.3
-
7
-
-
84897943848
-
An overview of noise-robust automatic speech recognition
-
J. Li, L. Deng, Y. Gong, and R. Haeb-Umbach, "An overview of noise-robust automatic speech recognition, in IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014.
-
(2014)
IEEE/ACM Transactions on Audio, Speech, and Language Processing
-
-
Li, J.1
Deng, L.2
Gong, Y.3
Haeb-Umbach, R.4
-
8
-
-
84890492030
-
An investigation of deep neural networks for noise robust speech recognition
-
M. L. Seltzer, D. Yu, and Y. Wang, "An investigation of deep neural networks for noise robust speech recognition, " in Proc. ICASSP, pp. 7398-7402, 2013.
-
(2013)
Proc. ICASSP
, pp. 7398-7402
-
-
Seltzer, M.L.1
Yu, D.2
Wang, Y.3
-
9
-
-
84890532503
-
Noise adaptive front-end normalization based on vector taylor series for deep neural networks in robust speech recognition
-
B. Li and K. C. Sim, "Noise adaptive front-end normalization based on vector Taylor series for deep neural networks in robust speech recognition, " in Proc. ICASSP, pp. 7408-7412, 2013.
-
(2013)
Proc. ICASSP
, pp. 7408-7412
-
-
Li, B.1
Sim, K.C.2
-
10
-
-
84906272122
-
An investigation of spectral restoration algorithms for deep neural networks based noise robust speech recognition
-
B. Li, Y. Tsao, and K. C. Sim, "An investigation of spectral restoration algorithms for deep neural networks based noise robust speech recognition, " in Proc. Interspeech, pp. 3002-3006, 2013.
-
(2013)
Proc. Interspeech
, pp. 3002-3006
-
-
Li, B.1
Tsao, Y.2
Sim, K.C.3
-
11
-
-
84906222220
-
Is speech enhancement pre-processing still relevant when using deep neural networks for acoustic modeling
-
M. Delcroix, Y. Kubo, T. Nakatani, and A. Nakamura, "Is speech enhancement pre-processing still relevant when using deep neural networks for acoustic modeling, " in Proc. Interspeech, pp. 2992-2996, 2013.
-
(2013)
Proc. Interspeech
, pp. 2992-2996
-
-
Delcroix, M.1
Kubo, Y.2
Nakatani, T.3
Nakamura, A.4
-
12
-
-
51849099743
-
A study of variable-parameter gaussian mixture hidden markov modeling for noisy speech recognition
-
X. Cui and Y. Gong, "A study of variable-parameter Gaussian mixture hidden Markov modeling for noisy speech recognition, " IEEE Trans. on Audio, Speech and Language Processing, vol. 15, no. 4, pp. 1366-1376, 2007.
-
(2007)
IEEE Trans. on Audio, Speech and Language Processing
, vol.15
, Issue.4
, pp. 1366-1376
-
-
Cui, X.1
Gong, Y.2
-
13
-
-
68549140008
-
A novel framework and training algorithm for variable-parameter hidden markov models
-
D. Yu, L. Deng, Y. Gong, and A. Acero. "A novel framework and training algorithm for variable-parameter hidden Markov models, " IEEE Transactions on Audio, Speech, and Language Processing, vol. 17, no. 7, 1348-1360, 2009.
-
(2009)
IEEE Transactions on Audio, Speech, and Language Processing
, vol.17
, Issue.7
, pp. 1348-1360
-
-
Yu, D.1
Deng, L.2
Gong, Y.3
Acero, A.4
-
14
-
-
84865736441
-
Generalized variable parameter HMMs for noise robust speech recognition
-
N. Cheng, X. Liu, and L. Wang, "Generalized variable parameter HMMs for noise robust speech recognition, " in Proc. Interspeech, pp. 481-484, 2011.
-
(2011)
Proc. Interspeech
, pp. 481-484
-
-
Cheng, N.1
Liu, X.2
Wang, L.3
-
15
-
-
84867594542
-
Contextual hidden markov models
-
M. Radenen and T. Artieres, "Contextual hidden Markov models, " in Proc. ICASSP, pp. 2113-2116, 2012.
-
(2012)
Proc. ICASSP
, pp. 2113-2116
-
-
Radenen, M.1
Artieres, T.2
-
16
-
-
84906221828
-
Feature space generalized variable parameter HMMs for noise robust recognition
-
Y. Li, X. Liu, and L. Wang, "Feature space generalized variable parameter HMMs for noise robust recognition, " in Proc. Interspeech, pp. 2968-2972, 2013.
-
(2013)
Proc. Interspeech
, pp. 2968-2972
-
-
Li, Y.1
Liu, X.2
Wang, L.3
-
17
-
-
0023263708
-
Multi-style training for robust isolated-word speech recognition
-
R. Lippmann, E. Martin, and D. Paul, "Multi-style training for robust isolated-word speech recognition, " in Proc. IEEE Int. Conf. Acoustic Speech Signal Processing, pp. 705-708, 1987.
-
(1987)
Proc. IEEE Int. Conf. Acoustic Speech Signal Processing
, pp. 705-708
-
-
Lippmann, R.1
Martin, E.2
Paul, D.3
-
18
-
-
0141701271
-
Environment adaptation for speech recognition in noise
-
M. Blanchet, J. Boudy and P. Lockwood, "Environment adaptation for speech recognition in noise, " in Proc. EUSIPCO, 1992, pp. 391-394.
-
(1992)
Proc. EUSIPCO
, pp. 391-394
-
-
Blanchet, M.1
Boudy, J.2
Lockwood, P.3
-
21
-
-
84910035297
-
Learning small-size DNN with output-distribution-based criteria
-
J. Li, R. Zhao, J.-T. Huang, and Y. Gong, "Learning small-size DNN with output-distribution-based criteria, " in Proc. Interspeech, 2014.
-
(2014)
Proc. Interspeech
-
-
Li, J.1
Zhao, R.2
Huang, J.-T.3
Gong, Y.4
-
22
-
-
84905262902
-
Factorized adaptation for deep neural network
-
J. Li, J.-T. Huang, and Y. Gong, "Factorized adaptation for deep neural network, " Proc. ICASSP, 2014.
-
(2014)
Proc. ICASSP
-
-
Li, J.1
Huang, J.-T.2
Gong, Y.3
|