메뉴 건너뛰기




Volumn 40, Issue 3, 2014, Pages 563-586

Feature-frequency-adaptive on-line training for fast and accurate natural language processing

Author keywords

[No Author keywords available]

Indexed keywords

ONLINE SYSTEMS; SENTIMENT ANALYSIS; SPEED;

EID: 84910067653     PISSN: 08912017     EISSN: 15309312     Source Type: Journal    
DOI: 10.1162/COLI_a_00193     Document Type: Article
Times cited : (24)

References (42)
  • 1
    • 0002652285 scopus 로고    scopus 로고
    • A maximum entropy approach to natural language processing
    • Berger Adam L., Vincent J. Della Pietra, and Stephen A. Della Pietra. 1996. A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):39–71.
    • (1996) Computational Linguistics , vol.22 , Issue.1 , pp. 39-71
    • Berger Adam, L.1    Pietra, V.J.D.2    Pietra, S.A.D.3
  • 3
    • 0013309537 scopus 로고    scopus 로고
    • Online algorithms and stochastic approximations
    • In D. Saad, editor, Cambridge University Press
    • Bottou Léon. 1998. Online algorithms and stochastic approximations. In D. Saad, editor. Online Learning and Neural Networks. Cambridge University Press, pages 9–42.
    • (1998) Online Learning and Neural Networks , pp. 9-42
    • Léon, B.1
  • 5
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms
    • Philadelphia, PA
    • Collins Michael. 2002. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Proceedings of EMNLP’02, pages 1–8, Philadelphia, PA.
    • (2002) Proceedings of EMNLP’02 , pp. 1-8
    • Michael, C.1
  • 6
    • 84858729241 scopus 로고    scopus 로고
    • Adaptive regularization of weight vectors
    • Vancouver
    • Crammer Koby, Alex Kulesza, and Mark Dredze. 2009. Adaptive regularization of weight vectors. In NIPS’09, pages 414–422, Vancouver.
    • (2009) NIPS’09 , pp. 414-422
    • Koby, C.1    Kulesza, A.2    Dredze, M.3
  • 7
    • 56449101965 scopus 로고    scopus 로고
    • Confidenceweighted linear classification
    • Helsinki
    • Dredze Mark, Koby Crammer, and Fernando Pereira. 2008. Confidenceweighted linear classification. In Proceedings of ICML’08, pages 264–271, Helsinki.
    • (2008) Proceedings of ICML’08 , pp. 264-271
    • Mark, D.1    Crammer, K.2    Pereira, F.3
  • 8
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi John, Elad Hazan, and Yoram Singer. 2010. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2,121–2,159.
    • (2010) Journal of Machine Learning Research , vol.12 , Issue.2 , pp. 121-2,159
    • John, D.1    Hazan, E.2    Singer, Y.3
  • 9
    • 33745600603 scopus 로고    scopus 로고
    • Exploiting context for biomedical entity recognition: From syntax to the web
    • Geneva
    • Finkel Jenny, Shipra Dingare, Huy Nguyen, Malvina Nissim, Christopher Manning, and Gail Sinclair. 2004. Exploiting context for biomedical entity recognition: From syntax to the Web. In Proceedings of BioNLP’04, pages 91–94, Geneva.
    • (2004) Proceedings of Bionlp’04 , pp. 91-94
    • Jenny, F.1    Dingare, S.2    Nguyen, H.3    Nissim, M.4    Manning, C.5    Sinclair, G.6
  • 10
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Freund Yoav and Robert Schapire. 1999. Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277–296.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Yoav, F.1    Schapire, R.2
  • 12
    • 72449129112 scopus 로고    scopus 로고
    • Periodic step-size adaptation in second-order gradient descent for single-pass on-line structured learning
    • Hsu Chun-Nan, Han-Shen Huang, Yu-Ming Chang, and Yuh-Jye Lee. 2009. Periodic step-size adaptation in second-order gradient descent for single-pass on-line structured learning. Machine Learning, 77(2-3):195–224.
    • (2009) Machine Learning , vol.77 , Issue.2-3 , pp. 195-224
    • Hsu, C.-N.1    Huang, H.-S.2    Chang, Y.-M.3    Lee, Y.-J.4
  • 13
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs Robert A. 1988. Increased rates of convergence through learning rate adaptation. Neural Networks, 1(4):295–307.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 295-307
    • Jacobs Robert, A.1
  • 14
    • 16244414494 scopus 로고    scopus 로고
    • Introduction to the bio-entity recognition task at jnlpba
    • Geneva
    • Kim Jin-Dong, Tomoko Ohta, Yoshimasa Tsuruoka, and Yuka Tateisi. 2004. Introduction to the bio-entity recognition task at JNLPBA. In Proceedings of BioNLP’04, pages 70–75, Geneva.
    • (2004) In Proceedings of Bionlp’04 , pp. 70-75
    • Kim, J.-D.1    Ohta, T.2    Tsuruoka, Y.3    Tateisi, Y.4
  • 15
    • 80053222535 scopus 로고    scopus 로고
    • Chunking with support vector machines
    • Pittsburgh, PA
    • Kudo Taku and Yuji Matsumoto. 2001. Chunking with support vector machines. In Proceedings of NAACL’01, pages 1–8, Pittsburgh, PA.
    • (2001) Proceedings of NAACL’01 , pp. 1-8
    • Taku, K.1    Matsumoto, Y.2
  • 16
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Williamstown, MA
    • Lafferty John, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML’01, pages 282–289, Williamstown, MA.
    • (2001) ICML’01 , pp. 282-289
    • John, L.1    McCallum, A.2    Pereira, F.3
  • 17
    • 44449094045 scopus 로고    scopus 로고
    • Flexible text segmentation with structured multilabel classification
    • Vancouver
    • McDonald Ryan, Koby Crammer, and Fernando Pereira. 2005. Flexible text segmentation with structured multilabel classification. In Proceedings of HLT/ EMNLP’05, pages 987–994, Vancouver.
    • (2005) Proceedings of HLT/ EMNLP’05 , pp. 987-994
    • Ryan, M.1    Crammer, K.2    Pereira, F.3
  • 18
    • 84877796371 scopus 로고    scopus 로고
    • Adaptive bound optimization for online convex optimization
    • Haifa
    • McMahan H. Brendan and Matthew J. Streeter. 2010. Adaptive bound optimization for online convex optimization. In Proceedings of COLT’10, pages 244–256, Haifa.
    • (2010) In Proceedings of COLT’10 , pp. 244-256
    • Brendan, M.H.1    Streeter, M.J.2
  • 19
    • 0001955526 scopus 로고    scopus 로고
    • A statistical study of on-line learning
    • In D. Saad, editor. Cambridge University Press
    • Murata Noboru. 1998. A statistical study of on-line learning. In D. Saad, editor. Online Learning in Neural Networks. Cambridge University Press, pages 63–92.
    • (1998) Online Learning in Neural Networks , pp. 63-92
    • Noboru, M.1
  • 21
    • 84860514602 scopus 로고    scopus 로고
    • Improving the scalability of semi-markov conditional random fields for named entity recognition
    • Sydney
    • Okanohara Daisuke, Yusuke Miyao, Yoshimasa Tsuruoka, and Jun’ichi Tsujii. 2006. Improving the scalability of semi-Markov conditional random fields for named entity recognition. In Proceedings of COLING-ACL’06, pages 465–472, Sydney.
    • (2006) Proceedings of COLING-ACL’06 , pp. 465-472
    • Daisuke, O.1    Miyao, Y.2    Tsuruoka, Y.3    Tsujii, J.4
  • 23
    • 85109864082 scopus 로고    scopus 로고
    • Introduction to the conll-2000 shared task: Chunking
    • Lisbon
    • Sang Erik Tjong Kim and Sabine Buchholz. 2000. Introduction to the CoNLL-2000 shared task: Chunking. In Proceedings of CoNLL’00, pages 127–132, Lisbon.
    • (2000) Proceedings of Conll’00 , pp. 127-132
    • Kim, S.E.T.1    Buchholz, S.2
  • 25
    • 17244376942 scopus 로고    scopus 로고
    • Biomedical named entity recognition using conditional random fields and rich feature sets
    • Geneva
    • Settles Burr. 2004. Biomedical named entity recognition using conditional random fields and rich feature sets. In Proceedings of BioNLP’04, pages 104–107, Geneva.
    • (2004) Proceedings of Bionlp’04 , pp. 104-107
    • Burr, S.1
  • 26
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for svm
    • Corvallis, OR
    • Shalev-Shwartz Shai, Yoram Singer, and Nathan Srebro. 2007. Pegasos: Primal estimated sub-gradient solver for SVM. In Proceedings of ICML’07, pages 807–814, Corvallis, OR.
    • (2007) Proceedings of ICML’07 , pp. 807-814
    • Shai, S.-S.1    Singer, Y.2    Srebro, N.3
  • 27
    • 0027313792 scopus 로고
    • Speed up learning and network optimization with extended back propagation
    • Sperduti Alessandro and Antonina Starita. 1993. Speed up learning and network optimization with extended back propagation. Neural Networks, 6(3):365–383.
    • (1993) Neural Networks , vol.6 , Issue.3 , pp. 365-383
    • Alessandro, S.1    Starita, A.2
  • 29
    • 84881050414 scopus 로고    scopus 로고
    • Latent structured perceptrons for large-scale learning with hidden information
    • Sun Xu, Takuya Matsuzaki, and Wenjie Li. 2013. Latent structured perceptrons for large-scale learning with hidden information. IEEE Transactions on Knowledge and Data Engineering, 25(9):2,063–2,075.
    • (2013) IEEE Transactions on Knowledge and Data Engineering , vol.25 , Issue.9 , pp. 2,063-2,075
    • Sun, X.1    Matsuzaki, T.2    Li, W.3
  • 31
    • 80053407938 scopus 로고    scopus 로고
    • Modeling latent-dynamic in shallow parsing: A latent conditional model with improved inference
    • Manchester
    • Sun Xu, Louis-Philippe Morency, Daisuke Okanohara, and Jun’ichi Tsujii. 2008. Modeling latent-dynamic in shallow parsing: A latent conditional model with improved inference. In Proceedings of COLING’08, pages 841–848, Manchester.
    • (2008) Proceedings of COLING’08 , pp. 841-848
    • Sun, X.1    Morency, L.-P.2    Okanohara, D.3    Tsujii, J.4
  • 32
    • 84875857217 scopus 로고    scopus 로고
    • Fast online training with frequencyadaptive learning rates for chinese word segmentation and new word detection
    • Jeju Island
    • Sun Xu, Houfeng Wang, and Wenjie Li. 2012. Fast online training with frequencyadaptive learning rates for Chinese word segmentation and new word detection. In Proceedings of ACL’12, pages 253–262, Jeju Island.
    • (2012) Proceedings of ACL’12 , pp. 253-262
    • Sun, X.1    Wang, H.2    Li, W.3
  • 33
    • 84863337519 scopus 로고    scopus 로고
    • A discriminative latent variable chinese segmenter with hybrid word/character information
    • Boulder, CO
    • Sun Xu, Yaozhong Zhang, Takuya Matsuzaki, Yoshimasa Tsuruoka, and Jun’ichi Tsujii. 2009. A discriminative latent variable Chinese segmenter with hybrid word/character information. In Proceedings of NAACL-HLT’09, pages 56–64, Boulder, CO.
    • (2009) Proceedings of NAACL-HLT’09 , pp. 56-64
    • Sun, X.1    Zhang, Y.2    Matsuzaki, T.3    Tsuruoka, Y.4    Tsujii, J.5
  • 34
    • 84878097530 scopus 로고    scopus 로고
    • Probabilistic chinese word segmentation with non-local information and stochastic training
    • Sun Xu, Yao Zhong Zhang, Takuya Matsuzaki, Yoshimasa Tsuruoka, and Jun’ichi Tsujii. 2013. Probabilistic Chinese word segmentation with non-local information and stochastic training. Information Processing & Management, 49(3):626–636.
    • (2013) Information Processing & Management , vol.49 , Issue.3 , pp. 626-636
    • Sun, X.1    Zhang, Y.Z.2    Matsuzaki, T.3    Tsuruoka, Y.4    Tsujii, J.5
  • 36
    • 80052416457 scopus 로고    scopus 로고
    • Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty
    • Suntec
    • Tsuruoka Yoshimasa, Jun’ichi Tsujii, and Sophia Ananiadou. 2009. Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty. In Proceedings of ACL’09, pages 477–485, Suntec.
    • (2009) Proceedings of ACL’09 , pp. 477-485
    • Yoshimasa, T.1    Tsujii, J.2    Ananiadou, S.3
  • 37
    • 33749243756 scopus 로고    scopus 로고
    • Accelerated training of conditional random fields with stochastic meta-descent
    • Pittsburgh, PA
    • Vishwanathan S. V. N., Nicol N. Schraudolph, Mark W. Schmidt, and Kevin P. Murphy. 2006. Accelerated training of conditional random fields with stochastic meta-descent. In Proceedings of ICML’06, pages 969–976, Pittsburgh, PA.
    • (2006) Proceedings of ICML’06 , pp. 969-976
    • Vishwanathan, S.V.N.1    Schraudolph, N.N.2    Schmidt, M.W.3    Murphy, K.P.4
  • 38
    • 85119977662 scopus 로고    scopus 로고
    • Subword-based tagging by conditional random fields for chinese word segmentation
    • Companion Volume: Short Papers, New York City
    • Zhang Ruiqiang, Genichiro Kikui, and Eiichiro Sumita. 2006. Subword-based tagging by conditional random fields for Chinese word segmentation. In Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers, pages 193–196, New York City.
    • (2006) Proceedings of the Human Language Technology Conference of the NAACL , pp. 193-196
    • Zhang, R.1    Kikui, G.2    Sumita, E.3
  • 41
    • 77958083019 scopus 로고    scopus 로고
    • Integrating unsupervised and supervised word segmentation: The role of goodness measures
    • Zhao Hai and Chunyu Kit. 2011. Integrating unsupervised and supervised word segmentation: The role of goodness measures. Information Sciences, 181(1):163–183.
    • (2011) Information Sciences , vol.181 , Issue.1 , pp. 163-183
    • Hai, Z.1    Kit, C.2
  • 42
    • 85161967549 scopus 로고    scopus 로고
    • Parallelized stochastic gradient descent
    • Vancouver
    • Zinkevich Martin, Markus Weimer, Alexander J. Smola, and Lihong Li. 2010. Parallelized stochastic gradient descent. In Proceedings of NIPS’10, pages 2,595–2,603, Vancouver.
    • (2010) Proceedings of NIPS’10 , pp. 2,595-2,603
    • Martin, Z.1    Weimer, M.2    Smola, A.J.3    Li, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.