메뉴 건너뛰기




Volumn 77, Issue 2-3, 2009, Pages 195-224

Periodic step-size adaptation in second-order gradient descent for single-pass on-line structured learning

Author keywords

Conditional random fields; Convolutional neural networks; On line learning; Sequence labeling; Stochastic gradient descent

Indexed keywords

CLASSIFICATION TASKS; CONDITIONAL RANDOM FIELD; CONVOLUTIONAL NEURAL NETWORK; GENERALIZATION PERFORMANCE; GRADIENT DESCENT; HESSIAN MATRICES; HIGH-DIMENSIONAL FEATURE SPACE; JACOBIANS; LARGE-SCALE SEQUENCES; LINEAR RELATION; LINEAR SUPPORT VECTOR MACHINES; LOSS FUNCTIONS; MAPPING FUNCTIONS; ON-LINE SETTING; ONLINE LEARNING; SECOND ORDERS; SINGLE PASS; STOCHASTIC GRADIENT DESCENT; STRUCTURED LEARNING; STRUCTURED PREDICTION; TRAINING EXAMPLE;

EID: 72449129112     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-009-5142-6     Document Type: Article
Times cited : (9)

References (52)
  • 1
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • 10.1162/089976698300017746
    • S.-I. Amari 1998 Natural gradient works efficiently in learning Neural Computation 10 251 276 10.1162/089976698300017746
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.-I.1
  • 2
    • 0002906163 scopus 로고
    • Improving the convergence of back-propagation learning with second-order methods
    • Morgan Kaufman San Mateo
    • Becker, S., & LeCun, Y. (1988). Improving the convergence of back-propagation learning with second-order methods. In Proceedings of the 1988 connectionist models summer school (pp. 29-37). San Mateo: Morgan Kaufman.
    • (1988) Proceedings of the 1988 Connectionist Models Summer School , pp. 29-37
    • Becker, S.1    Lecun, Y.2
  • 4
    • 34547991424 scopus 로고    scopus 로고
    • Solving multiclass support vector machines with LaRank
    • DOI 10.1145/1273496.1273508, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • Bordes, A., Bottou, L., Gallinari, P., & Weston, J. (2007). Solving multiclass support vector machines with LaRank. In Proceedings of the 24th international conference on machine learning (ICML'07) (pp. 89-96). New York: ACM. (Pubitemid 47275053)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 89-96
    • Bordes, A.1    Bottou, L.2    Gallinari, P.3    Weston, J.4
  • 8
    • 17444425307 scopus 로고    scopus 로고
    • On-line learning for very large data sets
    • DOI 10.1002/asmb.538
    • L. Bottou Y. LeCun 2005 On-line learning for very large data sets Applied Stochastic Models in Business and Industry 21 2 137 151 1091.68063 10.1002/asmb.538 2137546 (Pubitemid 40541359)
    • (2005) Applied Stochastic Models in Business and Industry , vol.21 , Issue.2 , pp. 137-151
    • Bottou, L.1    Cun, Y.L.2
  • 9
    • 38849166405 scopus 로고    scopus 로고
    • L. Bottou O. Chapelle D. DeCoste J. Weston (eds). MIT Press Cambridge
    • Bottou, L., Chapelle, O., DeCoste, D., & Weston, J. (Eds.) (2007). Large scale kernel machines. Cambridge: MIT Press.
    • (2007) Large Scale Kernel Machines
  • 12
    • 0004014502 scopus 로고    scopus 로고
    • A Gaussian prior for smoothing maximum entropy models
    • School of Computer Science, Carnegie Mellon University, PA, USA, Pittsburgh
    • Chen, S. F., & Rosenfeld, R. (1999). A Gaussian prior for smoothing maximum entropy models. Technical Report CMU-CS-99-108, School of Computer Science, Carnegie Mellon University, PA, USA, Pittsburgh.
    • (1999) Technical Report CMU-CS-99-108
    • Chen, S.F.1    Rosenfeld, R.2
  • 16
    • 0032751314 scopus 로고    scopus 로고
    • On computing the largest fraction of missing information for the EM algorithm and the worst linear function for data augmentation
    • DOI 10.1016/S0167-9473(99)00003-1, PII S0167947399000031
    • C. Fraley 1999 On computing the largest fraction of missing information for the EM algorithm and the worst linear function for data augmentation Computational Statistics and Data Analysis 31 1 13 26 1063.62507 10.1016/S0167-9473(99)00003-1 1705719 (Pubitemid 29520103)
    • (1999) Computational Statistics and Data Analysis , vol.31 , Issue.1 , pp. 13-26
    • Fraley, C.1
  • 18
    • 72449142210 scopus 로고    scopus 로고
    • Global and componentwise extrapolation for accelerating data mining from large incomplete data sets with the em algorithm
    • Hong Kong, China
    • Hsu, C.-N., Huang, H.-S., & Yang, B.-H. (2006). Global and componentwise extrapolation for accelerating data mining from large incomplete data sets with the EM algorithm. In Proceedings of the sixth IEEE international conference on data mining (ICDM'06) (pp. 265-274), Hong Kong, China.
    • (2006) Proceedings of the Sixth IEEE International Conference on Data Mining (ICDM'06) , pp. 265-274
    • Hsu, C.-N.1    Huang, H.-S.2    Yang, B.-H.3
  • 19
    • 46249123634 scopus 로고    scopus 로고
    • Integrating high dimensional bi-directional parsing models for gene mention tagging
    • DOI 10.1093/bioinformatics/btn183
    • C.-N. Hsu Y.-M. Chang C.-J. Kuo Y.-S. Lin H.-S. Huang I.-F. Chuang 2008 Integrating high dimensional bi-directional parsing models for gene mention tagging Bioinformatics 24 13 i286 i294 10.1093/bioinformatics/btn183 Proceedings of ISMB-2008 (Pubitemid 351911684)
    • (2008) Bioinformatics , vol.24 , Issue.13
    • Hsu, C.-N.1    Chang, Y.-M.2    Kuo, C.-J.3    Lin, Y.-S.4    Huang, H.-S.5    Chung, I.-F.6
  • 21
    • 67649541404 scopus 로고    scopus 로고
    • Global and componentwise extrapolations for accelerating training of Bayesian networks and conditional random fields
    • 10.1007/s10618-009-0128-3
    • H.-S. Huang B.-H. Yang Y.-M. Chang C.-N. Hsu 2009 Global and componentwise extrapolations for accelerating training of Bayesian networks and conditional random fields Data Mining and Knowledge Discovery 19 1 58 91 10.1007/s10618-009-0128-3
    • (2009) Data Mining and Knowledge Discovery , vol.19 , Issue.1 , pp. 58-91
    • Huang, H.-S.1    Yang, B.-H.2    Chang, Y.-M.3    Hsu, C.-N.4
  • 22
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale svm learning practical
    • B. Schölkoph C. J. C. Burges A. J. Smola (eds). MIT Press Cambridge. Chap. 11
    • Joachims, T. (1998). Making large-scale svm learning practical. In B. Schölkoph, C. J. C. Burges, & A. J. Smola (Eds.), Advances in kernel methods: support vector learning (Chap. 11, pp. 169-184). Cambridge: MIT Press.
    • (1998) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 24
    • 46249127243 scopus 로고    scopus 로고
    • Available under LGPL from the following URL
    • Kudo, T. (2006). CRF++: Yet another CRF toolkit. Available under LGPL from the following URL: http://crfpp.sourceforge.net/.
    • (2006) CRF++: Yet Another CRF Toolkit
    • Kudo, T.1
  • 28
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • 10.1109/5.726791
    • Y. LeCun L. Bottou Y. Bengio P. Haffner 1998 Gradient-based learning applied to document recognition Proceedings of the IEEE 86 11 2278 2324 10.1109/5.726791
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 33
    • 38149148314 scopus 로고
    • On the global and componentwise rates of convergence of the em algorithm
    • 0818.65153 10.1016/0024-3795(94)90363-8 1274429
    • X.-L. Meng D. B. Rubin 1994 On the global and componentwise rates of convergence of the EM algorithm Linear Algebra and Its Applications 199 413 425 0818.65153 10.1016/0024-3795(94)90363-8 1274429
    • (1994) Linear Algebra and Its Applications , vol.199 , pp. 413-425
    • Meng, X.-L.1    Rubin, D.B.2
  • 34
    • 0001955526 scopus 로고    scopus 로고
    • A statistical study of on-line learning
    • Cambridge University Press Cambridge
    • Murata, N. (1998). A statistical study of on-line learning. In On-line learning in neural networks (pp. 63-92). Cambridge: Cambridge University Press.
    • (1998) On-line Learning in Neural Networks , pp. 63-92
    • Murata, N.1
  • 35
    • 0032629928 scopus 로고    scopus 로고
    • Statistical analysis of learning dynamics
    • 0922.68094 10.1016/S0165-1684(98)00206-0
    • N. Murata S.-I. Amari 1999 Statistical analysis of learning dynamics Signal Processing 74 1 3 28 0922.68094 10.1016/S0165-1684(98)00206-0
    • (1999) Signal Processing , vol.74 , Issue.1 , pp. 3-28
    • Murata, N.1    Amari, S.-I.2
  • 44
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-GrAdient sOlver for SVM
    • DOI 10.1145/1273496.1273598, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. In ICML'07: Proceedings of the 24th international conference on machine learning (pp. 807-814). New York: ACM. (Pubitemid 47275141)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.