메뉴 건너뛰기




Volumn , Issue , 2014, Pages 539-549

The dual-sparse topic model: Mining focused topics and focused terms in short text

Author keywords

Sparse representation; Spike and slab; Topic modeling; Usergenerated content

Indexed keywords

MIXTURES;

EID: 84909644017     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2566486.2567980     Document Type: Conference Paper
Times cited : (130)

References (32)
  • 2
    • 77954725706 scopus 로고    scopus 로고
    • On smoothing and inference for topic models
    • A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh. On smoothing and inference for topic models. In UAI, pages 27-34, 2009.
    • (2009) UAI , pp. 27-34
    • Asuncion, A.1    Welling, M.2    Smyth, P.3    The, Y.W.4
  • 3
    • 80053436198 scopus 로고    scopus 로고
    • Unsupervised models of images by spike-and-slab rbms
    • Y. Bengio, A. C. Courville, and J. S. Bergstra. Unsupervised models of images by spike-and-slab rbms. In ICML, pages 1145-1152, 2011.
    • (2011) ICML , pp. 1145-1152
    • Bengio, Y.1    Courville, A.C.2    Bergstra, J.S.3
  • 4
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic topic models
    • D. M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77-84, 2012.
    • (2012) Communications of the ACM , vol.55 , Issue.4 , pp. 77-84
    • Blei, D.M.1
  • 5
    • 33645025214 scopus 로고    scopus 로고
    • Hierarchical topic models and the nested chinese restaurant process
    • D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical topic models and the nested chinese restaurant process. In NIPS, pages 106-114, 2003.
    • (2003) NIPS , pp. 106-114
    • Blei, D.M.1    Griffiths, T.L.2    Jordan, M.I.3    Tenenbaum, J.B.4
  • 6
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3:993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 7
    • 84863381525 scopus 로고    scopus 로고
    • Reading tea leaves: How humans interpret topic models
    • J. Chang, J. L. Boyd-Graber, S. Gerrish, C. Wang, and D. M. Blei. Reading tea leaves: How humans interpret topic models. In NIPS, pages 288-296, 2009.
    • (2009) NIPS , pp. 288-296
    • Chang, J.1    Boyd-Graber, J.L.2    Gerrish, S.3    Wang, C.4    Blei, D.M.5
  • 8
    • 84866008256 scopus 로고    scopus 로고
    • The contextual focused topic model
    • X. Chen, M. Zhou, and L. Carin. The contextual focused topic model. In KDD, pages 96-104, 2012.
    • (2012) KDD , pp. 96-104
    • Chen, X.1    Zhou, M.2    Carin, L.3
  • 10
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR, 2:265-292, 2002.
    • (2002) JMLR , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 11
    • 80053292525 scopus 로고    scopus 로고
    • Posterior vs. Parameter sparsity in latent variable models
    • J. V. Graca, K. Ganchev, B. Taskar, and F. Pereira. Posterior vs. parameter sparsity in latent variable models. In NIPS, pages 664-672, 2009.
    • (2009) NIPS , pp. 664-672
    • Graca, J.V.1    Ganchev, K.2    Taskar, B.3    Pereira, F.4
  • 12
    • 1842788824 scopus 로고    scopus 로고
    • Finding scientific topics
    • T. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 101:5228-5235, 2004.
    • (2004) PNAS , vol.101 , pp. 5228-5235
    • Griffiths, T.1    Steyvers, M.2
  • 13
    • 11244330002 scopus 로고    scopus 로고
    • Probabilistic latent semantic analysis
    • T. Hofmann. Probabilistic latent semantic analysis. In UAI, pages 289-296, 1999.
    • (1999) UAI , pp. 289-296
    • Hofmann, T.1
  • 14
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. JMLR, 5:1457-1469, 2004.
    • (2004) JMLR , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 15
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Frequentist and bayesian strategies
    • H. Ishwaran and J. S. Rao. Spike and slab variable selection: Frequentist and bayesian strategies. The Annals of Statistics, 33(2):730-773, 2005.
    • (2005) The Annals of Statistics , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 16
    • 2942588992 scopus 로고    scopus 로고
    • Learning to read between the lines: The aspect bernoulli model
    • A. Kabán, E. Bingham, and T. Hirsimäki. Learning to read between the lines: The aspect bernoulli model. In SDM, pages 462-466, 2004.
    • (2004) SDM , pp. 462-466
    • Kabán, A.1    Bingham, E.2    Hirsimäki, T.3
  • 17
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 18
    • 79953230442 scopus 로고    scopus 로고
    • Investigating task performance of probabilistic topic models: An empirical study of plsa and lda
    • Y. Lu, Q. Mei, and C. Zhai. Investigating task performance of probabilistic topic models: an empirical study of plsa and lda. Information Retrieval, 14(2):178-203, 2011.
    • (2011) Information Retrieval , vol.14 , Issue.2 , pp. 178-203
    • Lu, Y.1    Mei, Q.2    Zhai, C.3
  • 19
    • 84883095788 scopus 로고    scopus 로고
    • Improving lda topic models for microblogs via tweet pooling and automatic labeling
    • R. Mehrotra, S. Sanner, W. Buntine, and L. Xie. Improving lda topic models for microblogs via tweet pooling and automatic labeling. In SIGIR, pages 889-892, 2013.
    • (2013) SIGIR , pp. 889-892
    • Mehrotra, R.1    Sanner, S.2    Buntine, W.3    Xie, L.4
  • 20
    • 79960498353 scopus 로고    scopus 로고
    • Automatic evaluation of topic coherence
    • D. Newman, J. H. Lau, K. Grieser, and T. Baldwin. Automatic evaluation of topic coherence. In NAACL, pages 100-108, 2010.
    • (2010) NAACL , pp. 100-108
    • Newman, D.1    Lau, J.H.2    Grieser, K.3    Baldwin, T.4
  • 21
    • 84867130111 scopus 로고    scopus 로고
    • Rethinking collapsed variational bayes inference for lda
    • I. Sato and H. Nakagawa. Rethinking collapsed variational bayes inference for lda. In ICML, 2012.
    • (2012) ICML
    • Sato, I.1    Nakagawa, H.2
  • 22
    • 0003040479 scopus 로고
    • A multiply cause mixture model for unsupervised learning
    • E. Saund. A multiply cause mixture model for unsupervised learning. Neural Comput., 7(1):51-71, 1995.
    • (1995) Neural Comput. , vol.7 , Issue.1 , pp. 51-71
    • Saund, E.1
  • 23
    • 85046032701 scopus 로고    scopus 로고
    • Sparse overcomplete latent variable decomposition of counts data
    • M. Shashanka, B. Raj, and P. Smaragdis. Sparse overcomplete latent variable decomposition of counts data. In NIPS, pages 1313-1320, 2007.
    • (2007) NIPS , pp. 1313-1320
    • Shashanka, M.1    Raj, B.2    Smaragdis, P.3
  • 24
    • 85017329626 scopus 로고    scopus 로고
    • One theme in all views: Modeling consensus topics in multiple contexts authors
    • J. Tang, M. Zhang, and Q. Mei. One theme in all views: Modeling consensus topics in multiple contexts authors. In KDD, pages 5-13, 2013.
    • (2013) KDD , pp. 5-13
    • Tang, J.1    Zhang, M.2    Mei, Q.3
  • 25
    • 84864061876 scopus 로고    scopus 로고
    • A collapsed variational bayesian inference algorithm for latent dirichlet allocation
    • Y. W. Teh, D. Newman, and M. Welling. A collapsed variational bayesian inference algorithm for latent dirichlet allocation. In NIPS, pages 1353-1360, 2006.
    • (2006) NIPS , pp. 1353-1360
    • Teh, Y.W.1    Newman, D.2    Welling, M.3
  • 26
    • 79952129745 scopus 로고    scopus 로고
    • Rethinking lda: Why priors matter
    • H. M. Wallach, D. Mimno, and A. McCallum. Rethinking lda: Why priors matter. In NIPS, pages 1973-1981, 2009.
    • (2009) NIPS , pp. 1973-1981
    • Wallach, H.M.1    Mimno, D.2    McCallum, A.3
  • 27
    • 77956499537 scopus 로고    scopus 로고
    • Decoupling sparsity and smoothness in the discrete hierarchical dirichlet process
    • C. Wang and D. M. Blei. Decoupling sparsity and smoothness in the discrete hierarchical dirichlet process. In NIPS, pages 1982-1989, 2009.
    • (2009) NIPS , pp. 1982-1989
    • Wang, C.1    Blei, D.M.2
  • 28
    • 80052122601 scopus 로고    scopus 로고
    • Regularized latent semantic indexing
    • Q. Wang, J. Xu, H. Li, and N. Craswell. Regularized latent semantic indexing. In SIGIR, pages 685-694, 2011.
    • (2011) SIGIR , pp. 685-694
    • Wang, Q.1    Xu, J.2    Li, H.3    Craswell, N.4
  • 30
    • 77956537774 scopus 로고    scopus 로고
    • The ibp compound dirichlet process and its application to focused topic modeling
    • S. Williamson, C. Wang, K. A. Heller, and D. M. Blei. The ibp compound dirichlet process and its application to focused topic modeling. In ICML, pages 1151-1158, 2010.
    • (2010) ICML , pp. 1151-1158
    • Williamson, S.1    Wang, C.2    Heller, K.A.3    Blei, D.M.4
  • 31
    • 84995774405 scopus 로고    scopus 로고
    • Comparing twitter and traditional media using topic models
    • W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li. Comparing twitter and traditional media using topic models. In ECIR, pages 338-349, 2011.
    • (2011) ECIR , pp. 338-349
    • Zhao, W.X.1    Jiang, J.2    Weng, J.3    He, J.4    Lim, E.-P.5    Yan, H.6    Li, X.7
  • 32
    • 80053134572 scopus 로고    scopus 로고
    • Sparse topical coding
    • J. Zhu and E. P. Xing. Sparse topical coding. In UAI, pages 831-838, 2011.
    • (2011) UAI , pp. 831-838
    • Zhu, J.1    Xing, E.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.