메뉴 건너뛰기




Volumn , Issue , 2011, Pages 831-838

Sparse topical coding

Author keywords

[No Author keywords available]

Indexed keywords

STATISTICS;

EID: 80053134572     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (82)

References (30)
  • 2
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • D. Blei, A.Y. Ng, & M.I. Jordan. Latent Dirichlet allocation. JMLR, (3):993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.Y.2    Jordan, M.I.3
  • 3
    • 84859025245 scopus 로고    scopus 로고
    • Bayesian word sense induction
    • S. Brody & M. Lapata. Bayesian word sense induction. In ACL, 2009.
    • (2009) ACL
    • Brody, S.1    Lapata, M.2
  • 5
    • 34547976903 scopus 로고    scopus 로고
    • Sparse multinomial logistic regression via bayesian regularization
    • G.C. Cawley, N.L.C. Talbot, & M. Girolami. Sparse multinomial logistic regression via bayesian regularization. In NIPS, 2007.
    • (2007) NIPS
    • Cawley, G.C.1    Talbot, N.L.C.2    Girolami, M.3
  • 6
    • 56449092085 scopus 로고    scopus 로고
    • Efficient projections onto the ℓ1-ball for learning in high dimensions
    • J. Duchi, S. Shalev-Shwartz, Y. Singer, & T. Chandra. Efficient projections onto the ℓ1-ball for learning in high dimensions. In ICML, 2008.
    • (2008) ICML
    • Duchi, J.1    Shalev-Shwartz, S.2    Singer, Y.3    Chandra, T.4
  • 7
    • 71249110320 scopus 로고    scopus 로고
    • A majorizationminimization algorithm for (multiple) hyperparameter learning
    • C.-S. Foo, C.B. Do, & A.Y. Ng. A majorizationminimization algorithm for (multiple) hyperparameter learning. In ICML, 2009.
    • (2009) ICML
    • Foo, C.-S.1    Do, C.B.2    Ng, A.Y.3
  • 8
    • 80053292525 scopus 로고    scopus 로고
    • Posterior vs. parameter sparsity in latent variable models
    • J. Graa, K. Ganchev, B. Taskar, & F. Pereira. Posterior vs. parameter sparsity in latent variable models. In NIPS, 2009.
    • (2009) NIPS
    • Graa, J.1    Ganchev, K.2    Taskar, B.3    Pereira, F.4
  • 9
    • 33745765253 scopus 로고    scopus 로고
    • Learning sparse representations by non-negative matrix factorization and sequential cone programming
    • M. Heiler & C. Schnorr. Learning sparse representations by non-negative matrix factorization and sequential cone progamming. JMLR, 7:1385-1407, 2006. (Pubitemid 44024595)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1385-1407
    • Heiler, M.1    Schnorr, C.2
  • 10
    • 0348223982 scopus 로고    scopus 로고
    • Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation
    • A. Hyvärinen. Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation. Neural Computation, (11):1739-1768, 1999.
    • (1999) Neural Computation , vol.11 , pp. 1739-1768
    • Hyvärinen, A.1
  • 11
    • 0034920427 scopus 로고    scopus 로고
    • A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images
    • DOI 10.1016/S0042-6989(01)00114-6, PII S0042698901001146
    • A. Hyvärinen & P.O. Hoyer. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Research, 41(18):2413-2423, 2001. (Pubitemid 32667541)
    • (2001) Vision Research , vol.41 , Issue.18 , pp. 2413-2423
    • Hyvarinen, A.1    Hoyer, P.O.2
  • 12
    • 71149113559 scopus 로고    scopus 로고
    • Group lasso with overlap and graph lasso
    • L. Jacob, G. Obozinski, & J.-P. Vert. Group lasso with overlap and graph lasso. In ICML, 2009.
    • (2009) ICML
    • Jacob, L.1    Obozinski, G.2    Vert, J.-P.3
  • 13
    • 77956506018 scopus 로고    scopus 로고
    • Proximal methods for sparse hierarchical dictionary learning
    • R. Jenatton, J. Mairal, G. Obozinski, & F. Bach. Proximal methods for sparse hierarchical dictionary learning. In ICML, 2010.
    • (2010) ICML
    • Jenatton, R.1    Mairal, J.2    Obozinski, G.3    Bach, F.4
  • 15
    • 70049090214 scopus 로고    scopus 로고
    • DiscLDA: Discriminative learning for dimensionality reduction and classification
    • S. Lacoste-Julien, F. Sha, & M.I. Jordan. DiscLDA: Discriminative learning for dimensionality reduction and classification. In NIPS, 2008.
    • (2008) NIPS
    • Lacoste-Julien, S.1    Sha, F.2    Jordan, M.I.3
  • 16
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee & H.S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 17
    • 78751681286 scopus 로고    scopus 로고
    • Exponential family sparse coding with applications to self-taught learning
    • H. Lee, R. Raina, A. Teichman, & A.Y. Ng. Exponential family sparse coding with applications to self-taught learning. In IJCAI, 2009.
    • (2009) IJCAI
    • Lee, H.1    Raina, R.2    Teichman, A.3    Ng, A.Y.4
  • 19
    • 70349433731 scopus 로고    scopus 로고
    • Distributed algorithms for topic models
    • D. Newman, A. Asuncion, P. Smyth, & M. Welling. Distributed algorithms for topic models. JMLR, (10):1801-1828, 2009.
    • (2009) JMLR , Issue.10 , pp. 1801-1828
    • Newman, D.1    Asuncion, A.2    Smyth, P.3    Welling, M.4
  • 20
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • DOI 10.1038/381607a0
    • B.A. Olshausen & D.J. Field. Emergence of simplecell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607-609, 1996. (Pubitemid 26177476)
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 21
    • 85046032701 scopus 로고    scopus 로고
    • Sparse overcomplete latent variable decomposition of counts data
    • M. Shashanka, B. Raj, & P. Smaragdis. Sparse overcomplete latent variable decomposition of counts data. In NIPS, 2007.
    • (2007) NIPS
    • Shashanka, M.1    Raj, B.2    Smaragdis, P.3
  • 22
    • 80052119994 scopus 로고    scopus 로고
    • An architecture for parallel topic models
    • A. Smola & S. Narayanamurthy. An architecture for parallel topic models. In VLDB, 2010.
    • (2010) VLDB
    • Smola, A.1    Narayanamurthy, S.2
  • 24
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc., B(58):267-288, 1996.
    • (1996) J. Royal. Statist. Soc., B , Issue.58 , pp. 267-288
    • Tibshirani, R.1
  • 25
    • 77956499537 scopus 로고    scopus 로고
    • Decoupling sparsity and smoothness in the discrete hierarchical dirichlet process
    • C. Wang & D. Blei. Decoupling sparsity and smoothness in the discrete hierarchical dirichlet process. In NIPS, 2009.
    • (2009) NIPS
    • Wang, C.1    Blei, D.2
  • 26
    • 70450178502 scopus 로고    scopus 로고
    • Simultaneous image classification and annotation
    • C. Wang, D. Blei, & L. Fei-Fei. Simultaneous image classification and annotation. In CVPR, 2009.
    • (2009) CVPR
    • Wang, C.1    Blei, D.2    Fei-Fei, L.3
  • 27
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, & T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009.
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 28
    • 71149117321 scopus 로고    scopus 로고
    • MedLDA: Maximum margin supervised topic models for regression and classification
    • J. Zhu, A. Ahmed, & E.P. Xing. MedLDA: Maximum margin supervised topic models for regression and classification. In ICML, 2009.
    • (2009) ICML
    • Zhu, J.1    Ahmed, A.2    Xing, E.P.3
  • 29
    • 80052646861 scopus 로고    scopus 로고
    • Conditional topical coding: An efficient topic model conditioned on rich features
    • J. Zhu, N. Lao, N. Chen, & E.P. Xing. Conditional topical coding: An efficient topic model conditioned on rich features. In KDD, 2011.
    • (2011) KDD
    • Zhu, J.1    Lao, N.2    Chen, N.3    Xing, E.P.4
  • 30
    • 77956530160 scopus 로고    scopus 로고
    • Conditional topic random fields
    • J. Zhu & E.P. Xing. Conditional topic random fields. In ICML, 2010.
    • (2010) ICML
    • Zhu, J.1    Xing, E.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.