메뉴 건너뛰기




Volumn , Issue , 2011, Pages 31-53

Online expectation maximisation

Author keywords

Application to finite mixtures; EM algorithm and limiting EM recursion; Limitations of batch EM for long data records; Model and assumptions; Motivation behind association of two groups of words 'online (estimation)' and 'expectation maximisation (algorithm)'; Online expectation maximisation; Online expectation maximization the algorithm; Probabilistic principal component analysis (PCA) model of Tipping and Bishop (1999); Recursive, ubiquitous in computer science ambiguous, and not recommended; Traditional applications of online algorithms situations, in which data cannot be stored

Indexed keywords

MAXIMUM PRINCIPLE;

EID: 84908477733     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781119995678.ch2     Document Type: Chapter
Times cited : (25)

References (31)
  • 3
    • 72349096220 scopus 로고    scopus 로고
    • Online EM algorithm for hidden Markov models
    • Preprint
    • Cappé, O. (2009a) Online EM algorithm for hidden Markov models. Preprint.
    • (2009)
    • Cappé, O.1
  • 9
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • Chopin, N. (2002) A sequential particle filter method for static models. Biometrika, 89, 539-552.
    • (2002) Biometrika , vol.89 , pp. 539-552
    • Chopin, N.1
  • 10
    • 77956767977 scopus 로고    scopus 로고
    • Forward smoothing using sequential Monte Carlo
    • Technical Report CUED/F-INFENG/TR Cambridge University Engineering Department
    • Del Moral, P., Doucet, A. and Singh, S. S. (2009) Forward smoothing using sequential Monte Carlo. Technical Report CUED/F-INFENG/TR 638, Cambridge University Engineering Department.
    • (2009) , vol.638
    • Del Moral, P.1    Doucet, A.2    Singh, S.S.3
  • 14
    • 0038026196 scopus 로고    scopus 로고
    • Stochastic approximation
    • Lai, T. L. (2003) Stochastic approximation. Annals of Statistics, 31, 391-406.
    • (2003) Annals of Statistics , vol.31 , pp. 391-406
    • Lai, T.L.1
  • 15
    • 0000808747 scopus 로고
    • A gradient algorithm locally equivalent to the EM algorithm
    • Lange, K. (1995) A gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society, Series B, 57, 425-437.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 425-437
    • Lange, K.1
  • 21
    • 46749096639 scopus 로고    scopus 로고
    • Online learning with hidden Markov models
    • Mongillo, G. and Denève, S. (2008) Online learning with hidden Markov models. Neural Computation, 20(7), 1706-1716.
    • (2008) Neural Computation , vol.20 , Issue.7 , pp. 1706-1716
    • Mongillo, G.1    Denève, S.2
  • 22
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • (ed. M. I. Jordan). MIT Press, Cambridge, Massachusetts
    • Neal, R. M. and Hinton, G. E. (1999) A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models (ed. M. I. Jordan) pp. 355-368. MIT Press, Cambridge, Massachusetts.
    • (1999) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 26
    • 0003532348 scopus 로고
    • Efficient estimation from a slowly convergent Robbins-Monro process
    • Technical Report Cornell University, School of Operations Research and Industrial Engineering
    • Ruppert, D. (1988) Efficient estimation from a slowly convergent Robbins-Monro process. Technical Report 781, Cornell University, School of Operations Research and Industrial Engineering.
    • (1988) , vol.781
    • Ruppert, D.1
  • 28
    • 0034131785 scopus 로고    scopus 로고
    • On-line EM algorithm for the normalized Gaussian network
    • Sato, M. and Ishii, S. (2000) On-line EM algorithm for the normalized Gaussian network. Neural Computation, 12, 407-432.
    • (2000) Neural Computation , vol.12 , pp. 407-432
    • Sato, M.1    Ishii, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.