메뉴 건너뛰기




Volumn , Issue , 2014, Pages 190-197

Multi-objective cooperative coevolution of neural networks for time series prediction

Author keywords

[No Author keywords available]

Indexed keywords

EVOLUTIONARY ALGORITHMS; FORECASTING; MULTIOBJECTIVE OPTIMIZATION; TIME SERIES;

EID: 84908476133     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2014.6889442     Document Type: Conference Paper
Times cited : (17)

References (41)
  • 1
    • 0036887498 scopus 로고    scopus 로고
    • Multiobjective cooperative coevolution of artificial neural networks (multiobjective cooperative networks)
    • N. Garca-Pedrajas, C. Hervas-Martinez, and J. Munoz-Perez, "Multiobjective cooperative coevolution of artificial neural networks (multiobjective cooperative networks)", Neural Networks, vol. 15, pp. 1259-1278, 2002.
    • (2002) Neural Networks , vol.15 , pp. 1259-1278
    • Garca-Pedrajas, N.1    Hervas-Martinez, C.2    Munoz-Perez, J.3
  • 2
    • 84862785062 scopus 로고
    • Deterministic non-periodic flows
    • E. Lorenz, "Deterministic non-periodic flows", Journal of Atmospheric Science, vol. 20, pp. 267-285, 1963.
    • (1963) Journal of Atmospheric Science , vol.20 , pp. 267-285
    • Lorenz, E.1
  • 5
    • 84908485510 scopus 로고    scopus 로고
    • Grey relational grade in local support vector regression for financial time series prediction
    • H. Jiang and W. He, "Grey relational grade in local support vector regression for financial time series prediction", Expert Systems with Applications, vol. 83, pp. 136-145, 2012.
    • (2012) Expert Systems with Applications , vol.83 , pp. 136-145
    • Jiang, H.1    He, W.2
  • 6
    • 67349173600 scopus 로고    scopus 로고
    • Non-uniform attractor embedding for time series forecasting by fuzzy inference systems
    • M. Ragulskis and K. Lukoseviciute, "Non-uniform attractor embedding for time series forecasting by fuzzy inference systems", Neurocomputing, pp. 2618-2626, 2009.
    • (2009) Neurocomputing , pp. 2618-2626
    • Ragulskis, M.1    Lukoseviciute, K.2
  • 10
    • 79959468164 scopus 로고    scopus 로고
    • Time series forecasting: Automatic determination of lags and radial basis neural networks for a changing horizon environment
    • E. Parras-Gutierrez and V. Rivas, "Time series forecasting: Automatic determination of lags and radial basis neural networks for a changing horizon environment", The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1-7, 2010.
    • (2010) The 2010 International Joint Conference on Neural Networks (IJCNN) , pp. 1-7
    • Parras-Gutierrez, E.1    Rivas, V.2
  • 15
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution: An architecture for evolving coadapted subcomponents
    • -, "Cooperative coevolution: An architecture for evolving coadapted subcomponents", Evol. Comput., vol. 8, no. 1, pp. 1-29, 2000.
    • (2000) Evol. Comput. , vol.8 , Issue.1 , pp. 1-29
    • Potter, M.A.1    De Jong, K.A.2
  • 16
    • 44649193889 scopus 로고    scopus 로고
    • Accelerated neural evolution through cooperatively coevolved synapses
    • F. Gomez, J. Schmidhuber, and R. Miikkulainen, "Accelerated neural evolution through cooperatively coevolved synapses", J. Mach. Learn. Res., vol. 9, pp. 937-965, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 937-965
    • Gomez, F.1    Schmidhuber, J.2    Miikkulainen, R.3
  • 19
    • 84881562482 scopus 로고    scopus 로고
    • Use of cooperative coevolution for solving large scale multiobjective optimization problems
    • L. M. Antonio and C. A. Coello Coello, "Use of cooperative coevolution for solving large scale multiobjective optimization problems", 2013 IEEE Congress on Evolutionary Computation, pp. 2758-2765, 2013.
    • (2013) 2013 IEEE Congress on Evolutionary Computation , pp. 2758-2765
    • Antonio, L.M.1    Coello Coello, C.A.2
  • 21
    • 84875710474 scopus 로고    scopus 로고
    • Achieving superlinear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution
    • B. Dorronsoro, G. Danoy, A. Nebro, and B. Bouvry, "Achieving superlinear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution", Computers and Operations Research, vol. 40, pp. 1552-1563, 2013.
    • (2013) Computers and Operations Research , vol.40 , pp. 1552-1563
    • Dorronsoro, B.1    Danoy, G.2    Nebro, A.3    Bouvry, B.4
  • 22
    • 70349843699 scopus 로고    scopus 로고
    • A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design
    • C. K. Goh, K. C. Tan, D. S. Liu, and S. C. Chiam, "A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design", European Journal of Operational Research, vol. 202, pp. 42-54, 2010.
    • (2010) European Journal of Operational Research , vol.202 , pp. 42-54
    • Goh, C.K.1    Tan, K.C.2    Liu, D.S.3    Chiam, S.C.4
  • 24
    • 84863603865 scopus 로고    scopus 로고
    • On the issue of separability for problem decomposition in cooperative neuro-evolution
    • R. Chandra, M. Frean, and M. Zhang, "On the issue of separability for problem decomposition in cooperative neuro-evolution", Neurocomputing, vol. 87, pp. 33-40, 2012.
    • (2012) Neurocomputing , vol.87 , pp. 33-40
    • Chandra, R.1    Frean, M.2    Zhang, M.3
  • 27
    • 0036885602 scopus 로고    scopus 로고
    • A computationally efficient evolutionary algorithm for real-parameter optimization
    • K. Deb, A. Anand, and D. Joshi, "A computationally efficient evolutionary algorithm for real-parameter optimization", Evol. Comput., vol. 10, no. 4, pp. 371-395, 2002.
    • (2002) Evol. Comput. , vol.10 , Issue.4 , pp. 371-395
    • Deb, K.1    Anand, A.2    Joshi, D.3
  • 28
    • 84862823570 scopus 로고    scopus 로고
    • Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction
    • R. Chandra and M. Zhang, "Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction", Neurocomputing, vol. 86, pp. 116-123, 2012.
    • (2012) Neurocomputing , vol.86 , pp. 116-123
    • Chandra, R.1    Zhang, M.2
  • 30
    • 77955311883 scopus 로고    scopus 로고
    • Chaotic time series prediction with residual analysis method using hybrid elman-narx neural networks
    • M. Ardalani-Farsa and S. Zolfaghari, "Chaotic time series prediction with residual analysis method using hybrid elman-narx neural networks", Neurocomputing, vol. 73, no. 13-15, pp. 2540-2553, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.13-15 , pp. 2540-2553
    • Ardalani-Farsa, M.1    Zolfaghari, S.2
  • 32
    • 33750681289 scopus 로고    scopus 로고
    • Predicting chaotic time series by boosted recurrent neural networks
    • I. King, J. Wang, L.-W. Chan, and D. Wang, Eds. Springer Berlin/Heidelberg
    • M. Assaad, R. Bon, and H. Cardot, "Predicting chaotic time series by boosted recurrent neural networks", in Neural Information Processing, ser. Lecture Notes in Computer Science, I. King, J. Wang, L.-W. Chan, and D. Wang, Eds. Springer Berlin/Heidelberg, 2006, vol. 4233, pp. 831-840.
    • (2006) Neural Information Processing, Ser. Lecture Notes in Computer Science , vol.4233 , pp. 831-840
    • Assaad, M.1    Bon, R.2    Cardot, H.3
  • 33
    • 58649101329 scopus 로고    scopus 로고
    • A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications
    • January
    • C.-J. Lin, C.-H. Chen, and C.-T. Lin, "A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications", Trans. Sys. Man Cyber Part C, vol. 39, pp. 55-68, January 2009.
    • (2009) Trans. Sys. Man Cyber Part C , vol.39 , pp. 55-68
    • Lin, C.-J.1    Chen, C.-H.2    Lin, C.-T.3
  • 34
    • 79251498026 scopus 로고    scopus 로고
    • Residual analysis and combination of embedding theorem and artificial intelligence in chaotic time series forecasting
    • January
    • M. Ardalani-Farsa and S. Zolfaghari, "Residual analysis and combination of embedding theorem and artificial intelligence in chaotic time series forecasting", Appl. Artif. Intell., vol. 25, pp. 45-73, January 2011.
    • (2011) Appl. Artif. Intell. , vol.25 , pp. 45-73
    • Ardalani-Farsa, M.1    Zolfaghari, S.2
  • 36
    • 84856323880 scopus 로고    scopus 로고
    • A hybrid of multiobjective evolutionary algorithm and hmm-fuzzy model for time series prediction
    • M. R. Hassan, B. Nath, M. Kirley, and J. Kamruzzaman, "A hybrid of multiobjective evolutionary algorithm and hmm-fuzzy model for time series prediction", Neurocomputing, vol. 81, pp. 1-11, 2012.
    • (2012) Neurocomputing , vol.81 , pp. 1-11
    • Hassan, M.R.1    Nath, B.2    Kirley, M.3    Kamruzzaman, J.4
  • 37
    • 76749091461 scopus 로고    scopus 로고
    • Recursive bayesian recurrent neural networks for time-series modeling
    • Feb.
    • D. Mirikitani and N. Nikolaev, "Recursive bayesian recurrent neural networks for time-series modeling", Neural Networks, IEEE Transactions on, vol. 21, no. 2, pp. 262-274, feb. 2010.
    • (2010) Neural Networks, IEEE Transactions On , vol.21 , Issue.2 , pp. 262-274
    • Mirikitani, D.1    Nikolaev, N.2
  • 38
    • 0035494005 scopus 로고    scopus 로고
    • Solar cycle forecasting: A nonlinear dynamics approach
    • S. Sello, "Solar cycle forecasting: A nonlinear dynamics approach", Astronomy and Astrophysics, vol. 377, pp. 312-320, 2001.
    • (2001) Astronomy and Astrophysics , vol.377 , pp. 312-320
    • Sello, S.1
  • 41
    • 33750535466 scopus 로고    scopus 로고
    • Predicting chaotic time series using neural and neurofuzzy models: A comparative study
    • A. Gholipour, B. N. Araabi, and C. Lucas, "Predicting chaotic time series using neural and neurofuzzy models: A comparative study", Neural Process. Lett., vol. 24, pp. 217-239, 2006.
    • (2006) Neural Process. Lett. , vol.24 , pp. 217-239
    • Gholipour, A.1    Araabi, B.N.2    Lucas, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.